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Abstract

Modern software systems generate enormous volumes of log data to support
Alpowered  anomaly  detection, monitoring and fault diagnosis, far exceeding the capacity of manual analysis.
software logs, machine learning, deep  This paper proposes an architecture for detecting anomalous patterns in software
learning, selfhealing systems, log analysis, logs using advanced machine learning and deep learning techniques, enabling
LSTM, proactive fault diagnosis and self- healing capabilities. Traditional rule-based
approaches are inadequate for handling the scale and complexity of contemporary
log data, whereas deep learning models such as Long Short-Term Memory (LSTM)
networks and Transformer architectures excel at capturing contextual
dependencies within log sequences. To address challenges such as limited labeled
data, this study leverages self-supervised and contrastive learning methods. In
addition, reinforcement learning and rule-based automation are incorporated to
dynamically correct faults, thereby minimizing system downtime. The proposed
models are evaluated on benchmark log datasets using metrics including precision,
recall, F1- score, and AUC-ROC. Experimental results demonstrate that
Transformer-based models achieve superior performance compared to
conventional machine learning techniques, though at higher computational costs.
Notably, selfhealing mechanisms reduce downtime by up to 68.2%, underscoring
the potential of Al to significantly enhance system reliability and availability.
However, challenges such as model interpretability, computational efficiency, and
real-time adaptability remain. This paper provides a state-of-the-art review of Al
based log anomaly detection approaches and outlines future research directions,
emphasizing lightweight architectures, explainable Al, and scalable deployment
as key enablers for advancing Al-powered anomaly detection and selfhealing
systems in safety-critical domains.
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1. INTRODUCTION

Current software systems have become complex
and therefore need more advanced techniques in
the monitoring and diagnosing. Software logs as a
type of the source records for system activity take
place foranalyzing the system, the recognition of its
failed behavior, and the diagnosis of faults.
Historically, the software log analysis could be
done only with the help of manual examination
as well as rules, whichperfectly fit into simple cases,

yet fail to be reviewed as efficient in more complex
and dynamic surroundings (He et al., 2016). These
systems are becoming increasingly more complex,
and the amount of logs produced is simply too
large to be processed individually (Lou et al., 2010).
To this end, researchers have employed Al and ML
paradigms to automate anomaly detection in
software logs for early diagnosis of faults and
creation of self-healing systems.

isreview.net

| Shah & Igbal, 2025 | Page 11


https://portal.issn.org/resource/ISSN/3106-7840
https://portal.issn.org/resource/ISSN/3106-7832
mailto:1shahzahir@gmail.com
mailto:2iqbalsnampk@yahoo.com

The Intelligent
System Review

e

ISSN: 3106-7840| 31067832
Volume 2, Issue 4, 2025

Software logs are important in understanding the
status of a system and the occurrence of anomalies
is common hence the need to detect them.
Conventional methods are mostly based on pre-
specified patterns or on a certain set of thresholds
that define anomalies (Fu et al., 2009). However,
these approaches have several demerits like high
false positives, lack of flexibility in adapting into new
types of anomaly and difficulty in using the
approach in different environments (He et al.,
2017). Thus, Al techniques have become a viable
solution to learn these complex patterns using ML
models and identifying anomalies in real-time (Du
et al., 2017). Through using machine learning to
train and select patterns, log analysis appears to
generate more accurate, specific, and reliable
results in terms of identifying new patterns of
failure and security threats (Zhang et al., 2019).
Modern developments of deep learning and NLP
technologies have only improved the efficiency of
log anomaly detection more significantly. In
particular, LSTM networks, CNNs, and
transformer-based ones are used to fit log
sequences, including the approach demonstrated
much higher effectiveness compared to traditional
statistical methods (Meng et al., 2019; Brown et
al,, 2021). These models can express long time
dependency between the logs and context about
events in the same sequence that can lead to better
Anomaly detection. Further, novel techniques of
self- supervision have been proposed in order to
enhance the results of AD in cases of lack of labeled
data (Ren et al., 2022). Selfsupervision using
contrastive  learning and autoencoders is
demonstrated to capture appropriate log
representations and detect potential minor issues
with the help of which rule-based systems might
miss, according to Wang and his team of authors.
Moving to the next step after anomaly detection it
is possible to use self-healing systems that can
recover automatically when faults are detected.
Self-healing mechanisms are the self-diagnostic
ability of the system that allows for constant
detection of failures and diagnosis of the problem
together with proposing a solution towards the
resolution of the problem with minimal system
downtime (Ghosh et al., 2021). Such systems also
use reinforcement learning and automated
remedial steps to rectify any problem detected

without the involvement of human beings (Chen
et al., 2020). Ebrahimi et al. (2018) suggest that by
introducing Al into the system, they are improved
system availability and decreased maintenance
expenses, particularly in the area of anomaly
detection with self-healing properties.

However, there are still some open issues with Al
utilization in log analysis. First of all, the major
one is that when it comes to the modeling, the
anomalous data are rare to observe in comparison
to log entries, which leads to a shift in predictions
(Zhou et al., 2021). Furthermore, deep learning
based anomaly detection models are difficult to
interpret though deep learning algorithms are
powerful neural networks which make it
challenging for operators to comprehend and
validate the outcomes (Lipton 2018). Another
significant problem is the computational cost,
since real-time analysis involves models that must
analyze high- velocity log streams as soon as
possible. Overcoming these challenges is the
crucial step in deploying the technologies of log
analysis with the help of Al in massive
encompassing critical missions.

This paper’s objective is to discuss the cutting-edge
area of Albased anomaly detection in software
logs, with specific focus on the applications of an
intelligent fault diagnosis and self-healing systems.
We then discuss the state-of-the-art approaches for
traditional and machine learning approaches for
log anomaly detection, advantages and
disadvantages. Anomaly detection is the next
section of the paper and we address log
preprocessing and feature extraction as well as the
selection of the models. The proposed approach
is thus used on realworld log

datasets to show its ability to flag the anomalies
and to invoke self-repair processes. In the end, we
consider the prospects of using Al in log analysis
and estimate the directions for its further
enhancement with regard to the model quality,
interpretability, and time/storage complexity.
Employing machine learning techniques in
anomaly detection shifts an organization from a
repair mentality where they only repair faulty
systems to an orderly approach of system
management thereby cutting down on the systems’
downtime and enhancing the reliability of the
overall software. Another way that improves the
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system resilience is the building of self healing
qualities that provide the means for the program
to self-diagnose and recover from existing faults.
The advancements in the Al technologies will
greatly enhance the utilization of log analysis
software through increasing the levels of intelligent
control and automotive maintenance in the
future.

2. Literature Review

2.1 Traditional Approaches to Anomaly
Detection in Software Logs

Detecting an anomaly in the software logs has
always been an important step in software
monitoring and assessment of system reliability.
Initial methods of anomaly detection include rule-
based systems, thresholding, and statistical analysis
methods and algorithms. The rule based system
implies the specification by the user for the rules
defining conditions that classify an incoming log
entry as either normal or anomalous. Even though
such approaches were workable in small scale and
predictable surroundings they could not
adequately address the unpredictable
characteristics of today’s Software systems due to
the volume and variability of logs, making it
virtually impossible to set manual rules for
detection (Kimura et al., 2016).

Statistical methods for anomaly detection
appeared to be a more adaptive approach to the
problem  using probability models and
distribution-based anomaly detection (Xu et al.,
2016). Statistical tools including Principal
Component Analysis (PCA), Markov models,and
Hidden Markov Models (HMM) were used to
identify the disparities in the variation
patterns (Wang et al., 2017). However, these
techniques were designed to require prior
knowledge of system behavior and prone to fail in
case of non- linear and high dimensions of log
data. Furthermore, static methods based on
statistical models also faced the problem of
employing anomaly detection in real time as it did
not change with the dynamic behavior of the
software and was not efficient with multiple log
sequences (Liu et al.,, 2018)(Ijaz, M. K., 2023)
Other methods including kmeans and
DBSCAN were also used in the clustering of
logs with the objective of detecting anomaly

classes that do not require labeling of the logs
(Guan et al., 2019b). Although they

showed promising

results in
anomalies, clustering-based methods had the
problem of high time complexity and
performance deterioration on large log datasets
which made them less scalable (Sun et al., 2020).
As software logs increased in size and the variety of
data sources expanded, these basic approaches
were no longer sufficient, and researchers began
applying Al- based methods for manufacturing
anomalies.

discovering  new

2.2 Machine
Detection in Logs
Machine learning has brought a new era on how
to handle and analyze anomalies in software logs.
Specifically a set of supervised learning algorithms
like SVM, decision trees, and ensemble models
including random forest, and gradient boost
achieved superior results in anomaly classification
compared to other methods (Zhao et al., 2020).
These models work from labeled training data, so
that they are able to distinguish between ordinary
log entries and those which are not. But the biggest
problem is that labelled log data is scarce due to
the low frequency instances of anomalies, and
labelling them by hand is tedious and prone to
errors (Raza, A., 2021)

For example, unsupervised learning methods were
used in the past for their advantage in detecting
anomalies of unknown classes. Autoencoder, a
type of neural network commonly used for
dimensionality reduction and feature learning, has
been applied often in log-based anomaly detection
(Huang et al., 2019). These models are designed

to learn normal

Learning-Based ~ Anomaly

log sequences and the irregularities from
normative trends are identified by the models. The
same applies for isolation forest, which is an
ensemble technique for isolating out-of-cluster
instances based on the partitioning of instances,
has also shown efficiency in detecting outlying
instances on large-scale log data (Jiang et al., 2020).
Tor is one of the most popular tools that help to
preserve anonymity and privacy of its users while
browsing the general Internet and using hidden
services for the secure access to the content.
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Anonymity is provided by volunteer- operated
virtual tunnels in a multi-hop connectivity model
that makes Tor’s hidden services to anonymize
users, content providers and servers. However,
recent rtesearch has revealed that there are
inconsistencies in the connection process of Tor
HS that can undermine the anonymity of the user
and reveal the content of the site, despite the use
of encryption, through website fingerprinting. (H
Ali, M Igbal, MA Javed, SFM Naqvi, MM Aziz, M
Ahmad, 2023)

Other techniques that have also been used in
anomaly discovery of software logs include One-Class
SVMs and density-based techniques such as GMM
have also been used (Tan et al., 2022). These
methods create a hyperplane around apparently
normal data and categorize any observation that
falls outside this hyperplane as an anomaly.
However, their behavior depends on the
hyperparameters and the distribution of log
features; therefore, it is not ideal for dynamically
changing environments (Shen et al., 2021).

2.3 Deep Learning for Log Anomaly
Detection Deep learning has greatly boosted
anomaly discovery by allowing automation on
feature learning for sequence data. RNNs and
LSTM, GRU are widely used to capture
sequential log patterns(Fang et al., 2021). These
models can capture dependency at a long range
in log sequences and that means one can be able
to identify an anomaly spanning a number of
events. LSTM-based methods have been widely
used in learning the normal log behaviours in
cloud and distributed computing settings (Wang
et al., 2021). Recently, there have been
attempts to use transformer-
based architectures, like BERT and
GPT, for log anomaly detection by using attention
mechanisms able to capture contextual relations
within log entries (Zeng et al., 2022). These models
have provided better results in terms of analyzing
logs which are wused to gain meaningful
representation in order to identify anomalies in
complex software systems. However, their
computational based processing still poses a
challenge for real-time applications as noted by Liu
et al. (2023).
Other research using CNN has also been

conducted in log anomaly detection particularly
on structured logs (Zhao et al., 2021). CNN-based
approaches extract local patterns within the log
sequences as seen below, which is an effective
approach for classifying anomalous elements.
Although CNNs provide a fast time of inference,
these networks lack the capability of capturing
longrange dependencies, which makes them
rather unsuitable for analyzing highly sequential
log data (Naseer, S., 2018, November)

2.4 Self-Supervised and
Learning for Log Analysis
Due to limited availability of labeled log data, self-
supervised learning has gained much attention.
Self- supervision ~ means  that  models
acquire representations from
unlabelled data through pretext tasks such as next
event prediction, masked token prediction and
contrastive learning (Guo et al., 2022). This is
due to the fact that through training through
large logs, they are able to learn more general
patterns for the different log types to be able to
label new anomalies as such without such rigid
specific definitive categorization (Naseer, S., 2018)
For instance, contrastive learning, a kind of self-
supervision learning that learns from similar
and different instances, has proven effective in
log anomaly detection (Tang et al., 2022).
Other methods like SimCLR and MoCo have
been extended to be used for log-based tasks to
enhance the ability of models to learn
discriminative features without necessarily having
to label them (Chen et al.,, 2023). Thus, the
utilization of contrastive learning has proven to
enhance detection of such anomalies in complex
and dynamic software contexts. It is very
important to control that the tasks are executed
efficiently in order to maximize the computing
resources utilization in process scheduling. Many
algorithms are available for task scheduling to
achieve optimal and efficient use of computing
resources. (M Igbal, MU Shafiq, S Khan, S
Alahmari, Z Ullah, 2024)

Contrastive

2.5 Self-Healing Systems and Automated
Fault Recovery

Anomaly detection is one of the kinds of proactive
software maintenance; self-correction can help the

isreview.net

| Shah & Igbal, 2025 | Page 14


https://portal.issn.org/resource/ISSN/3106-7840
https://portal.issn.org/resource/ISSN/3106-7832

The Intelligent
System Review

F

ISSN: 3106-7840| 31067832
Volume 2, Issue 4, 2025

software to restore functioning on its own.
Automated selfrepair uses Al for detection of
anomalies that cause a service failure and it could
prompt service restart, resource rebalancing or
software update (Park et al., 2021). Reinforcement
learning has been also used in self-healing
architectures where self-interaction of an agent in
overall context to learn the best recovery plan
(Kumar et al., 2023).

There are novel studies in the literature that
present reinforcement learning to optimize
anomaly detection models with self-healing
mechanisms (2018; Singh et al., 2022). These
systems are capable of categorizing the severity of
the anomaly and, therefore, control the frequency
of changes in recovery methodologies in a given
system making the system more robust. there is also
an integration of self-healing with the help of rule-
based heuristics supported with sophisticated Al
that has provided a great positive impact of
enhancing the fault tolerance levels in large-scale
distributed systems (Yuan et al., 2023).

Despite these developments some issues arise on
the side of interpretability as well as on the
reliability aspect of the self-healing systems. Many
Al-driven models are black-box systems, which
work well but are not easily explainable, thus, it is
challenging for system administrators to confirm
the corrective actions taken (Zhang et al., 2023).
The future work will further develop the methods
of increasing the visibility of self-healing
mechanisms along with the ability to
accommodate the new environments in which the
software is to be executed (Yerubayeva, A., 2022,
November)

Recent developments in the field of anomaly
identification have escalated from basic rule-based
and statistical techniques to more sophisticated
approaches involving machine learning and deep
learning.  Although  the supervised and
unsupervised learning algorithms have increased
the detection rate to a great extent, the self-
supervised and contrastive learning has also
simultaneously increased the flexibility of the Al-
based log analysis. Furthermore, the work that
combines anomaly detection and self healing
mechanisms for automatically fixing faults can be
regarded as the prospective trend. However, some
issues remain with the models such as

interpretability of the models, speed and the
ability of the models to adapt on the fly. Mitigating
these issues will be critical in enabling the
deployment of Albased anomaly detection and
self-healing systems in high-impact use cases.

3. Methodology

3.1 Data Collection and Preprocessing

The first process to be followed in developing an
anomaly detection system for software logs is data
acquisition. This work focuses on the benchmark
with HDFS, BGL and log files obtained from large
scale cloud computing environment for
benchmarking. Moreover, some real-world
production logs from cloud services, microservice,
and containerized applications were collected to
analyze the feasibility of the proposed anomaly
detection framework. This raw log data included
time stamp, logging level which could be anything
from INFO, WARN, ERROR, brief description of
the event as well as the trace of the computer
program at the time of event. Because logs are
produced as text files, such data needs to be
preprocessed to transform them into a format
suitable for analysis.

The preprocessing stage included several steps
such as Log parsing, Tokenization, and
Vectorization. Log preprocessing was carried out
using Drain and LogCluster in which rules and
machine learning the effortlessness of log files into
structured representations. First, it is tokenization
which is used to split the log messages into words,
phrases or sequences in order to extract features.
Textual logdata also contained a lot of noise hence
stopword removal and stemming were also used to
eliminate the noises. To address the problem of
converting textual information to numerical
features, both TF- IDF and word embedding
techniques including Word2Vec and FastText
were applied. Further, log sequences were
represented by using event templates and
positional ~embeddings being useful for
maintaining dependencies of the events that log
comprise of.

3.2 Feature
Representation Learning

Engineering and

The process of successful anomaly detection
depends on the identification of the right features
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that are able to capture the nature of logs. These
included frequency sampling of events, entropy of
messages, and log distribution by time which are
normally extracted using conventional and
traditional manual feature extraction techniques.
However, tremendous exploration in logs may
ignore complex patterns and dependencies, often
requires handcrafted features that limit the
effectiveness of machine learning models, and
subsequently requires feature learning through
deep learning methodologies.

Deep learning technique was used to learn
representations that contain both semantic and
temporal properties of the logs. Specifically,
Recurrent Neural Networks, LSTM and GRU
were used to capture temporal dependencies in the
log sequences used in this problem. These models
were learned to identify normal sequences of log
events and how to identify topological changes that
indicate an anomaly. Moreover, the famous
Transformer structures like BERT and GPT were
adapted by fine- tuning on the log data sets for
better contextual analysis in order to have
improved results in anomaly detection. Self-
attention in the Transformer models enabled the
appreciation of longrange dependencies in the
logs data as opposed to other methods such as

RNNs or CNNEs.

33 Machine Learning and Deep Learning
Models for Anomaly Detection

The anomaly detection framework involved
integration of supervised, unsupervised, and
self

supervised machine learning models. In this kind
of supervised setting, actual labeled datasets were
used in developing classifiers like Random Forest,
Support Vector Machines (SVM), and Gradient
Boosting Decision Trees (GBDT). Such models
can be trained using logs that have been tagged in
terms of the typical and suspicious activity, so, the
new entries of the log can be automatically
classified according to the learned patterns.
However, because annotated samples of anomalies
are relatively rare in practice, traditional
supervised learning methods were not commonly
used.

As a result, to overcome the problem of lack of
labeled data, unsupervised learning models were

used in the process of shooting identification.
Autoencoder, a neural network model for feature
learning, has been employed to reconstruct
normal log sequences and sort out the anomalies
from the reconstructed errors. By estimating the
degree of deviation to the learned normal pattern,
two other methods, Isolation Forests and One-
Class SVMs, were employed in recognizing
outliers. Furthermore, density-based approaches
for example Gaussian Mixture Models (GMM)
were applied in modelling the probability density
functions for the log features and identifying
outlier instances from the expected density
functions.

Additional techniques of self-supervised learning
were also applied in order to improve the
performance of the anomaly detection. Transfer
from data logs, three popular contrastive learning
methods namely simclr, mocov2 and mocov3 have
been employed to extract meaningful
representations from the datasets of patient logs.
Self-supervision of training models to learn
patterns of similar and dissimilar log events
enhanced the generalization of detecting different
forms of anomalies without a need for large
labeling of data. The combination of pretraining
based on self-supervision with fine-tuned anomaly
detection models enhanced robustness and their
performance.

34 Root Cause Analysis and Anomaly
Explanation In addition to alert generation it is
mandatory to offer alarm explanation and root
cause analysis to help the system operator to
diagnose faults. This

research also aimed to apply the techniques of
explainable Al to improve the interpretability of
the results. The two methods used for explanation
of the machine learning models were SHAP
(SHapley Additive exPlanations) and LIME (Local
Interpretable Model-agnostic Explanations) for
determining which log features were key to the
classification of an anomaly. These allowed system
administrators to identify which areas of the logs
and attributes were related to the defined
anomalies in order to fix the problem more
quickly.

For the deep learning-based anomaly detection,
the heatmaps from Transformer models were used
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to identify the specific log event sequences that
elicited an anomaly signal. Moreover, random
clustering methods include tSNE, and UMAP
technique was applied on log data density and
normal and  anomalous  clusters  were
distinguished. Thus, explainability techniques in
conjunction with RCA tools provided actionable
insights that contributed to decreasing the mean
time to repair (MTTR) for the detected faults.

35 Implementation of Self-Healing
Mechanisms The last steps of the planned
framework were to incorporate  automatic
recovery mechanisms to rectify the faults. To
address this real-time self- healing process, the
component used reinforcement learning and
rule-based remediation to correct anomalies.
These agents were trained to use Q- learning
and Deep Q-Networks (DQN) to maximize
remediation policies and adjust the recovery
process according to received feedback from the
system. Some of the learned corrective actions
include handling of possible failures such as
service failure, resource redistribution
and configuration modifications.

In addition, there were more conventional rule-
based automation scripts that were employed with
Al initiations to the remediation processes. These
scripts were run at an event of an anomaly
occurring and performed tasks also based on
historical fault solving data. The integration of
reinforcement learning and rule-based automation
offered a fairly balanced self-healing algorithm
with dynamism and stability. In this study, self-
healing was assessed withthree indicators, which
include the reduction in system downtime,
accuracy of faultresolution and the amount of
time that was taken to recover from faults.

3.6 Model Evaluation and Performance
Metrics When ranking the anomaly detection
models, multiple factors were used, such as accuracy
measures like precision, recall rates, Fl-scores, and
curve areas under the receiver operating
characteristic  (AU- ROC). These indicators
measured the efficiency of the classification of
anomalies. Precision and recall were wused
especially in classifying false positives and false
negatives of the data set and also to reduce false

alarms while at the same time capturing actual
outliers.

For the unsupervised models, clustering purity,
silhouette score and log reconstruction error was
the measure of evaluation. To assess the efficiency
of the self-healing mechanisms, the time of the
system’s return to its functionality before and after
the incorporation of Al automation was taken into
consideration. The effect of the proposed

framework was evaluated by comparing the overall
reduction observed in an MTTD and MTTR.

3.7 Experimental Setup and Deployment
Anomaly detection system was then proposed,
designed and deployed as a system in a live software
monitoring system. In this scenario of setting up a
real-time analysis, logs were deployed in Cloud
with Kubernetes clusters. Apache Kafka was
employed for log streaming and ingestion, which is
capable of handling huge amounts of data. The
ML models were further deployed as micro-service
enabling them to easily integrate with monitoring
services such as Prometheus, Grafana among
others.

As part of the evaluation, controlled experiments
were performed in which different synthetic
anomalies were injected into the log streams. Over
and above, performance metrics including
Response time, Identification accuracy, and auto-
recovery measures were measured with high
Workload. These experiments proved how useful
it is to use Al for detecting anomalies that point
to a fault, to initiate

predefined recovery measures and prevent the
breakdown of a system.

4. Results

4.1 Model Performance on  Anomaly
Detection

A comparison of different machine learning
models for anomaly detection in software logs
shows that there are notable differences in
different evaluation criteria concerning precision,
recall, Fl-score AUC- ROC, and time taken to
train the models as well as

time taken to make predictions. In general,
Transformer-based models outperformed all other
models with the Fl-score of 0.92, while LSTM
models achieved the Flscore of 0.90.
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Autoencoders performed remarkably, with an F1- Machines (SVM) struggled and displayed lower
score estimated to be 0.86. Compared to the recall values, which meant that they had higher
baselines, Random Forest and Support Vector false negative rates.

Table 1: Model Performance Metrics on Log Anomaly Detection

Model Precision Recall Fl-score AUC-ROC Training Time (s)  [Inference
Time (ms)
Random 0.85 0.78 0.81 0.89 12.5 1.2
Forest
SVM 0.81 0.75 0.78 0.85 10.8 1.5
LSTM 0.92 0.89 0.90 0.94 35.2 2.8
Autoencoder 0.88 0.85 0.86 0.91 28.9 2.3
Isolation Forest 0.84 0.79 0.81 0.87 154 1.7
Transformer
0.94 0.91 0.92 0.96 423 35
Figure 1 Fl-score Comparison of Anomaly Detection Models
Fl-score Comparison of Anomaly Detection Models
0.8
0.6
L_‘L 0.4
0.2
-0 & ~ S
S & & &
S N

In order to visualize these results, a bar chart was
developed as shown in the following Figure 1 to
compare different models of anomaly detection in
terms of Fl-score. From the figure , it is evident
that deep learning techniques, most recent
transformative

and LSTMs, are more effective than the traditional
machine learning algorithms in detecting
anomalies in log data because of its capability to
take into account sequential patterns. Another
downside of deep learning models is the
training  time;  for instance, training for
Transformers takes 42.3 sec while for Random
Forest, it only takes 12.5 sec. Nevertheless, the
enhanced accuracy of deep learning models gives a

Model

rationale for their computational time in sizable
anomaly detection applications.

4.2 Performance Across Different Datasets
Thus, the effectiveness of the models developed
here was evaluated on HDEFS logs, BGL logs, cloud
logs, container logs, and custom logs datasets. As
also presented in table 2, the Fl-scores of
the

Transformer model were consistently higher than
those of all the other algorithms varying from 0.88
to

0.92. Same for LSTM models which slightly
deteriorated and improved whenever it was
needed based on the dataset used. Isolation Forest
was the lowest-performing model, particularly with
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custom generated logs: generalizing to different
contexts across the board, it achieved an overall

Table 2: Performance Evaluation Across Different Datasets

Fl-score of 0.77.

Dataset LSTM F1- Autoencoder F1- Transformer F1- Isolation Forest F1-
score score score score

HDFS Logs 0.90 0.88 092 0.81

BGL Logs 0.89 0.87 091 0.80

Cloud Logs 0.87 0.85 0.89 0.78

Container 0.88 0.86 0.90 0.79

Logs

Custom Logs 0.85 0.82 0.88 0.77

Figure 2 Radar Chart: Model Performance

Radar Chart: Model Performance Comparison

Recall

AUC-ROC

Comparison

The Fl-score performance evaluation for datasets
is further described in the following figure 2, to
show the Fl-score of several models on several
datasets. Analyzing the presented graph, it is
possible to conclude that deep learning models,
especially the models built on Transformer, are

more suitable for changes in the log structure
compared to usual methods of anomaly detection.
These findings indicate that it is worthwhile for
organizations using Al-based log monitoring tools
and services to pay more attention to Al, or deep

Random Forest
SVM

LSTM
Autoencoder
Isolation Forest
Transformer

learning techniques when dealing with dynamic
log data.

4.3 Feature Extraction Effectiveness in Log
Analysis

Feature extraction is among the most crucial
functions in the process of log, telemetry and other

isreview.net

| Shah & Igbal, 2025 |

Page 19


https://portal.issn.org/resource/ISSN/3106-7840
https://portal.issn.org/resource/ISSN/3106-7832

The Intelligent
System Review

Vi

ISSN: 3106-7840| 31067832
Volume 2, Issue 4, 2025

types of anomaly detection because it provides a
way of converting text log data into machine
understandable and quantifiable formats. As
shown in Table 3, four feature extraction
techniques including TF-IDF, Word2Vec, Fasttext
and Logcluster, and BERT embeddings were
considered for the evaluation of their effect on the
Table 3: Comparison of Feature Extraction Techniques

performance of the anomaly detection system.
Thus, we are only predominantly witnessing
BERT embeddings outcompeting conventional
techniques, such as TF- IDF with F1 score of 0.77,
LogCluster of 0.80.

Figure 3 Feature Extraction Effectiveness in Log Analysis

Feature Extraction Effectiveness in Log Analysis

Word2Vec

FastText

LogCluster
As depicted in Figure 3 below, the percentage
contribution of each feature extraction technique
towards the improvement of the log analysis is
presented in a pie chart. This is because BERT
embeddings are more contextual with log
sequences as compared to word embeddings,
therefore the performance difference is due to the
kind of embeddings used in the model.

4.4 Effectiveness of Self-Healing
Systems in Reducing Downtime
Self-sustaining systems include automation of the

TF-IDF

BERT Embeddings

anomaly detection process with an immediate
attempt as the remedy for the problems that need
to be solved to prevent a breakdown in the system.
Various strategies for recovery and its effect on
system downtimes are presented in the table
below. The results hence reveal that the hybrid Al
models were the most effective in achieving the
shortest recovery time of the system with an overall
improved downtime by 68.2%. Previous rule-based
methods of recovery were less effective with
restoring the time lost with a mere 22.3 % as
opposed to manual intervention approach being
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least efficient.

Table 4: SelfHealing System Effectiveness in Reducing Downtime

Recovery Strategy Avg Downtime Before Avg Downtime After [Downtime Reduction
(mins) (mins) (%)

Rule-Based 45.2 35.1 22.3

Reinforcement 50.3 22.4 55.5

Learning

Hybrid Al 48.1 15.3 68.2

Manual Intervention 60.7 50.2 17.3

Effectiveness of Self-Healing Strategies in Reducing Downtime

60 | Avg Downtime Before (mins)
—e— Avg Downtime After (mins)

50
@
=
E
o 40
£
= o
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2 30t
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Rule-Based Reinforcement Learning Hybrid Al Manual Intervention

Recovery Strategy

Figure 4 Effectiveness of SelfHealing Strategies in Reducing Downtime

Figure 4 is a line chart showing the decrease of
system downtime with reference to self-healing
strategy. The dramatic reduction in system
downtime in cases after the application of the
hybrid Al and reinforcement learning presents
viable opportunities in applying Allead
automation in strengthening

system reliability. These results point out the need
of integrating smart self-healing capabilities in
today's software environments to ensure their
availability and lower service expenses.

Table 5: False Positive and False Negative Rates

4.5 False Positive and False Negative Rates

In evaluating anomaly detection models there is a
need to ensure that false positive values as well as
false negative values are kept to the lowest level. In
this context, the false positive rate of the
transformer- based models was the lowest, equal
to 1.2 percent,

and the false negative rate, equal to 1.5 percent,
also could be mentioned. According to the results,
inspection had the highest false negative rate of
6.7% which implies high probability of missing
out on important anomalies.

Model False Positive Rate (%) |False Negative Rate (%)
Random Forest 3.2 4.1
SVM 5.1 6.7
LSTM 1.8 2.2
Autoencoder 2.4 3.1
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Isolation Forest 4.3
Transformer 1.2

5.0
1.5

Figure 5 False Positive Vs. False Negative Rates In Anomaly Detection Models
False Positive vs. False Negative Rates in Anomaly Detection Models

False Negative Rate (%)
B
X

X Model
Random Forest
SVM

LSTM
Autoencoder
Isolation Forest
Transformer

X X X X X

15 2.0 25 3.0 35
False Positive Rate (%)
Figure 5 is a type of graph called scatter plot which
shows false positives and false negatives of every
model. The above figure also manifests that the
Transformer-based model is more accurate and
reliable than the traditional machine learning
approach, like the Isolation Forest and Support
Vector Machine model in terms of precision and
recall. These are due to the proper choice of the
Al model to be used for the specific systems as well
as the fact that high FNs may lead to more
undetected system failures.
4.6
different Techniques

Logs Analysis Performance according to

Log parsing is especially for the function of

Table 6: Log Parsing Performance for Different Methods

4.0

4.5 5.0

preprocessing the log data before the occurrence
of the anomaly detection process. Table 6 depends
on the results of different log parsing techniques
such as Drain, LogCluster, and other conventional
techniques like regex parsing, ML parsing, and
BERT parsing. Yes, the mechanism checked with
the help of BERT gave the highest parsing
accuracy of 95.1% but needed more time, 5 ms per
log record. On the other hand, regex based parsing
had the lowest accuracy of 85.4% but this method
was the fastest and took 2.8 ms per log entry.

Log Parsing Method Parsing Accuracy (%) |Avg Processing Time (ms)
Drain 91.5 3.5
LogCluster 89.7 4.1
Regex-Based 85.4 2.8
MLBased 92.2 32
BERT 95.1 5.0
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Figure 6 Log Parsing Accuracy Comparison

Log Parsing Accuracy Comparison
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Figure 6 provides a box plot showing the accuracy
of each of the methods of log parsing. It is also
observed from the outcomes that both the ML-
based and BERT-based parsers provide the most
optimum solutions in terms of accuracy and time.
However, regex based methods are always fast but
they cannot be easily modified to cater for change
in log format. For organizations desiring high
accuracy in the results, the focus should shift to
the use of ML assisted parsing as opposed to rule-
based parsing approaches.

4.7 Resource  Utilization of Anomaly
Detection Models

Efficiency of resources is a significant aspect that

%aeed %?’QS

intelligence models for usage in production
processes. Table 7 shows a comparison of CPU,
memory and inference time of different models.
As seen in the Figure 6, Transformer-based models
required the highest amount of CPU usage
(78.5%) and memory usage (4.5 GB), which were
both high- level computational resources. The
LSTM models were also resource-demanding
models but slightly more efficient than the previous
models. Specifically, Random Forest and SVM had
relatively low results in the CPU and memory;

however they had high

inference latency as compared to deep learning

needs to be considered when deploying artificial models.
Table 7: Resource Utilization During Anomaly Detection
Model CPU Usage (%) |Ivlemory Usage (GB) |Inference Latency (ms)
Random Forest 45.2 1.5 1.2
SVM 50.1 1.2 1.5
LSTM 65.3 2.8 2.8
Autoencoder 70.2 3.1 2.3
Isolation Forest 55.4 2.3 1.7
Transformer 78.5 4.5 3.5
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Figure 7 Resource Utilization Comparison
Resource Utilization Comparison

Model

CPU Usage (%)

Memory Usage (GB)
Metrics

A heatmap has been prepared in Figure 5 showing

trends in resource usage across the models. These
findings show that although models based on the
Transformer achieve higher accuracy, they are
slower in terms of their time complexity and may
be undesirable for real-time applications based on
the given research among participants. This
highlights that in order to reach an acceptable level
of accuracy, organizations depend on much more
than mere computation and as such,
computational efficiency has to be balanced
according to the capability of the organizations’

infrastructure.

-50

-40

-30

Sib)

Inference Latency (ms)

4.8 Anomaly Detection Success Rates in
Different Scenarios

The last efficiency assessment compared the ability
of the anomaly detection models to achieve success
in different failure scenarios, such as cloud system
failures, = distributed databases, containers,
network latency, and disk I/O. Table 8 highlights
that overall, all methods based on the Transformer
succeeded in detecting the anomalies with the
highest average of 88-94%. LSTM models were
ranked second with the success rate of from 85%
to 92%. For the disk 1/O bottleneck analysis,
Isolation Forest achieved the overall lowest success
rates, specifically, at 77%.

Table 8: Anomaly Detection Success Rates Across Different Scenarios

Scenario LSTM Success Autoencoder Success Transformer Success [solation Forest
Rate (%) [Rate (%) [Rate (%) Success Rate (%)

Cloud System 92 88 94 81

Failure

Distributed DB 89 87 91 80

Crash

Container Outage 87 85 89 78

Network Latency 88 86 90 79

Spike

Disk I/O 85 82 88 7

Bottleneck
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Figure 8 Anomaly Detection Success Rates Across Different Scenarios
Anomaly Detection Success Rates Across Different Scenarios
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Figure 7 shows a bar chart demonstrating success
ratios for wvarious scenarios. Thus, the results
indicate that deep learning models are more
appropriate in explaining multiple and more
complicated failure cases in software systems.
Therefore, it is recommended that Transformer
and the LSTM techniques should be considered as
a top priority for mission-critical uses where high
accuracy for anomaly detection is needed.

These findings are a good attempt in providing an
understanding of the automated anomaly
detection and selfhealing system of software logs
using Al The results also show that in comparison
with usual machine learning methods, deep
learning techniques, especially transformer and
LSTM-based approaches, achieve enhanced
precision, recall, and overall rates of anomaly
detection tasks. Moreover, the implementation of
a selfviolent self- healing system makes it possible
to fix itself to troubleshoot

and minimize system failures, which add to the
reliability of the software. However, deep learning
models are heavily demanding in terms of either
CPU cycles or Cores, hence the accuracy needs to
be put in contention with the computational
capabilities of the organization. From this
research, certain recommendations can be made

toward improving the generality of Al Driven Log
Monitoring systems in contemporary software
systems.

5. Discussion

The outcomes of this study reveal that the
proposed approach of Al-based anomaly detection
is highly effective compared to rule- and statistic-
based approaches for analyzing software logs. The
superior performance of deep learning models,
particularly Transformer-based architectures and
LSTM  networks, highlights the growing
importance of advanced machine learning
techniques in software monitoring and fault
detection. Self-healing mechanisms are another
area that proves the effectiveness of Al in making
systems less susceptible to stoppages in the
contemporary computerized world. However,
these technologies have some limitations such as
data limitations, model limitations,
computational cost and real-time issues which
must be solved to achieve the best result.

5.1 Superiority of Deep Learning for Log-
Based Anomaly Detection

The analysis of the performance of various models
in this study shows that deep learning-based
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models for anomaly detection are much more
accurate than machine learning models.
Transformer models had higher precision, recall
and Fl-score metrics, thus proved to be the best
option to find anomalous patterns in log data set.
These are consistent with the current trends in
conducting various analyses that call for the use of
selfattention  mechanisms and  contextual
embeddings to analyze log sequences (Li et
al.,,2023; Zhang et al., 2023). Compared with
traditional approaches, deep learning techniques
are capable of learning features from log data in a
hierarchical manner, which greatly alleviates the
need to extract features from scratch (Cheng et al.,
2022).

Although the deep learning models are efficient in
their operation, they are fairly complex and call for
substantial train time and computational memory.
This experiment also concluded that while using
Transformer-based models, 4.5 GB memory and
78.5% CPU usage was being utilized, such values
are prohibitive for deployment in environments
with limited computing capabilities. Previous
studies have suggested several methods to solve this
problem, such as optimizing the network
structures and using quantization methods to
decrease the amount of computations needed
(Kim et al., 2022; Wang et al., 2021). Future work
should be directed towards optimizing deep
learning models in relation to establishing efficient
realtime log anomaly detection in the context of
distributed and edge computing paradigms.

5.2 Challenges of Data Imbalance and Labeled
Log Data

This would pose a huge problem when it comes to
anomaly detection because anomalies are much far
and in between compared to normal log events.
This is due to the fact that labeled anomaly data is
rare hence hindering the ability of supervised
learning models to learn adequately. This was
observed in Support Vector Machines (SVM) and
Isolation Forest algorithms where more samples
misclassified into the negative class due to strictly
defined decision boundaries. It has been found
that the use of oversampling, synthetic data, and
semi-supervised learning strategies minimizes the
effect of data imbalance (Wang et al., 2022, Sun et
al., 2023, Liu et al., 2022).

Auto learning techniques have recently been
proposed as a way to learn a model which does not
rely on labeled examples (Zhou et al., 2023). These
methods help to train anomaly detection models
from the log sequences without labels to enhance
the performance of the models in detecting new
failures that were not trained by the models.
Recent papers show promise of contrastive
learning for anomaly detection where the model is
trained to spot the difference between normal
and anomalous logs without the need for
annotations (Chen et al., 2023; Yu et al., 2022).
Consequently, this research verified self-supervised
learning allowed for higher success rates of
anomaly detection in various and dynamic log
contexts.

5.3 The Need for Explainability and
Interpretability

One limitation of deep learning for anomaly
detection is that the detection model often lacks a
notation that can be explained, which poses a
major problem since system administrators cannot
trust the model if they cannot validate its
predictions. While traditional log monitoring
methods offer direct reasons for developing rules
found in the log file, deep learning models are lack
explanation, functioning as black box analysis. As
mentioned in the prior research, this issue has
been identified, and the majority of the scholars
have stressed the importance of explainable Al
(XAI) approaches in anomaly detection (Gao et al.,
2023; Huang et al., 2022).

To increase the interpretability of deep learning
models, SHAP and LIME were employed in the
current study. These techniques identified the
most significant log events that would significantly
contribute to the anomaly predictions and gave
chance to the administrators to validate the
flagged anomalies efficiently. However, these
methods are helpful in generating insights but
they add more computation time and real-time
interpretability becomes an issue. Further research
should be aimed at the improvement of DL-based
AD interpretability while keeping the approach
light-weight.
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5.4 The Role of SelfHealing Systems in
Enhancing Software Resilience

Self-healing is yet another enhancement in
proactive fault remediation, which enables
particular thrifty monitor systems to detect and
rectify problematic situations before they turn out
into recoverability models, which are a typical
characteristic of Al-driven monitoring systems.
Consequently, it established that the use of hybrid
Al: reinforcement learning and rule-based
automation, minimize system’s downtime by up
to 68.2% thereby proving the

effectiveness of Al  remediation. These
observations also align with the outcomes of other
scholarly ~ works—namely, that  employing
reinforcement learning-based self-healing
mechanisms enhances failure  recovery
effectiveness and system availability (Park et al.,
2023; Tang et al., 2023).

Nonetheless, self-healing mechanisms must be
constantly adjusted in response to changes to
suppress any interference that would generate
excessive cascading overhead in the system. A
weakness of reinforcement learning based self-
healing is the possibility to categorize some
anomalies, specifically the transient ones, as
serious issues, and cause unnecessary instance
restarts or resource redistribution (Zheng et al.,
2022). Further developments should be aimed at
the adaptive self- healing policies that would
differentiate between fatal and temporary failures;
the self-healing approaches should not deteriorate
the observed performance.

5.5 Scalability and Deployment
Considerations for Large-Scale Systems

In large-scale cloud computing and distributed
computing, scalability is one of the major issues on
the realization of Al-based anomaly detection and
self-healing. The findings of this work thereby
pinpoint that although deep learning models offer
great accuracy, these come within the cost of high
computational demand for memory. Several
recent works have discussed the use of federated
learning in the context of anomaly detection,
where models are trained cooperatively across
multiple devices, thus minimizing the load on any
single machine (Zhao et al., 2023; Feng et al.,
2022).

One of the issues is real-time data analysis with log
data, which implies the need for stream processing
infrastructure. The specified work also utilized
Apache Kafka along with Kubernetes-based
microservices for log ingestion and for also
Anomaly Detection &amp; Prevention to scale the
architecture in the cloud environments. However,
the current approaches using deep learning do not
have high-throughput inference operations,
making them impractical for use in realtime
operations. Due to the features of the edge Al,
it is imperative to

advance research on model optimization methods
and applied methods for realtime anomaly

detection (Wang et al., 2023).

5.6 Future Research Directions

Therefore, even though the present work
contributes important knowledge on Al for
anomaly detection, it leaves few questions
unanswered. Therefore, more research should be
directed toward improving the deep learning
models, specially in relation to knowledge
distillation and model compression to minimize
computational complexity. Moreover, the current
state of explainability in Albased anomaly
detection must be enhanced by the production of
further development of new deep learning
explaining methods.

Another interesting future research direction is
the Multi-modal log analysis, which combines log
data, system metrics, network traces, and
application performance metrics to improve the
accuracy of anomaly detection (Chen et al., 2023).
Integration of dissimilar data types will help to
design and deploy more effective and accurate
anomaly detection models that would be more
sensitive to changing conditions in software-based
systems.

Conclusion

Deep learning, self-supervised learning, and self-
healing mechanisms are also identified as playing
a crucial part in the development of Al-based
anomaly detection. These technologies enhance
the accuracy of anomaly detection as well as the
efficiency of solving faults but some issues like
evolving imbalance datasets, model explain-ability,
high  computational cost, and realtime
computations are issues that need to be solved to

isreview.net

| Shah & Igbal, 2025 | Page 27


https://portal.issn.org/resource/ISSN/3106-7840
https://portal.issn.org/resource/ISSN/3106-7832

The Intelligent
System Review

F

ISSN: 3106-7840| 31067832
Volume 2, Issue 4, 2025

improve the application of these technologies.
Future works should concentrate on the
development of efficient, explainable, and
adaptive Al techniques for continuous and real-
time detection of faults and remedial actions in
today’s software ecosystems.
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