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 Abstract 

This study advances Solar Energetic Particle (SEP) prediction through advanced 
machine learning techniques, mitigating the risks SEPs pose to space missions, 
satellites, and terrestrial systems. Using historical and real-time data from NASA 
and ESA, models based on Long Short-Term Memory (LSTM) networks, 
Convolutional Neural Networks (CNNs), and Random Forest algorithms were 
developed. Careful dataset preparation, hyperparameter tuning, and cross-
validation ensured robust model performance. Among these, CNNs demonstrated 
superior accuracy and precision, making them a valuable tool for SEP forecasting. 
Overall, this work enhances machine learning capabilities for space weather 
prediction, contributing to safer and more reliable space operations. 
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INTRODUCTION 
Solar energetic particles (SEPs) are suprasternal 
charged particles (mostly protons and electrons) 
traveling through the interplanetary medium at 
relativistic velocities, produced by solar phenomena 
such as flares or coronal mass ejections. Riding along 
on countless other high-energy particles that travel 
through space at nearly light speed, this radiation 
presents dangers to satellite- and ground-based 
technology. SEPs are essential for space weather and 
consist of various solar phenomena affecting the 
regions from interplanetary to Earth's atmosphere. 
Solar energetic particle (SEP) study goes back many 
decades to the early days of cloud-chamber 
observations on solar phenomena and their effects on 
Earth's magnetosphere. Historically, top or special 
(Link 3) SEP events have been linked to satellite 
communication through sun outages, power 
breakdowns, and the risk of high radiation exposure 
inside solar panels by aerospace pilots on flights at 
heights equal to or higher than tens of kilometers. The 

high energy of solar energetic particles (SEPs) allows 
them to penetrate spacecraft shielding, leading to 
damage to onboard electronics and loss of 
performance for solar panels with further 
consequences concerning enhanced radiation 
exposure risks for crew members. In contrast, the solar 
energetic particles into Earth's atmosphere during a 
geomagnetic storm via an atmosphere located at 
heights corresponding to the standard altitudes of jet 
aircraft able to be loaded along ground-level 
information lines and as electric currents are known 
that penetrate entirely through high-voltage 
transformers throughout North-America causing all 
power outage extension over a widespread area. Solar 
Energetic Particles (SEPs), Galactic Cosmic Rays 
(GCRs), and other particles localized within our 
planet's magnetosphere comprise the radiation 
encompassing space. Understanding the radiation 
environment in space is critical for developing proper 
mitigation strategies to protect humans and 
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technology aboard spacecraft and on Earth [1]. 
Underlying the importance of analyzing SEP and 
forecasting its occurrences is the capability of the 
phenomenon to protect critical systems and human 
activity in space and on the planet. Such a system 
requires satellites for communication, navigation, 
weather forecasting, and Earth observation, which are 
greatly affected by SEP occurrences. Such phenomena 
can affect the work of satellites or even lead to service 
disruptions or potentially permanent malfunction. In 
addition, crewed space flights, including those to the 
ISS and future missions to the Moon and Mars, 
require accurate SEP predictions to prevent 
astronauts from radiation exposure that raises the 
likelihood of developing cancer and other diseases. 
Antarctic and Arctic flights of high-flying planes also 
expose passengers and crews to increased radiation 
levels due to contamination by SEP situations. As 
mentioned above, it is clear that accurate predictions 
of SEP incidents will help the airlines to change the 
flight path and avoid these incidents only to ensure 
the safety of passengers [2]. In addition, SEP-induced 
geomagnetic storms directly affect terrestrial power 
networks by inducing electricity currents that 
significantly damage transformers and interrupt 
electricity power supply interruption. In essence, the 
knowledge of SEP activity enables better planning and 
mitigation methods for power grid operators to use to 
reduce the likelihood of interruption. This scientific 
field has direct uses in investigating the details of solar 
energetic particles (SEPs).  SC measurements can 
improve the understanding of the Sun’s system and its 
probe into the geophysically important 
magnetosphere, thereby promoting Heliophysics. 
Improved comprehensive models and predictive 
techniques for SEP events complement our ability to 
forecast space weather, which helps study further and 
develop space science and exploration [4]. 
 
2. LITERATURE REVIEW 
Solar Energetic Particles (SEPs) are ions, protons, 
electrons, or other particles from the sun during solar 
flares or other coronal mass ejections (CMEs). These 
particles travel near light speed and pose significant 
threats to space missions, astronauts, and commercial 
air transport, mainly on polar routes. High energy 
protons in the form of SЕPs are capable of causing 
disruptions or failure of electrical and electronic 
systems, deformation of communication systems, and 

increased radiation dosage to the workforce, especially 
in long-term interplanetary space missions [5]. Due to 
variations in SEP occurrence, accurate prediction is 
needed to inform precaution measures such as 
removing vulnerable assets or repositioning spacecraft 
for safety, increasing the security of space expeditions 
and ground activities [6]. The SEP prediction methods 
use solar magnetograms and flare data, while the 
empirical models use past trends to make drastic 
forecasts. Physics-based models simulate particle 
acceleration but require much computation while 
machine-learning models analyze large data sets to 
increase model accuracy [7]. Different SEP prediction 
models offer different strengths and weaknesses. 
Intuitive models are sufficient for quick forecasts but 
fail when out-of-sample events occur. Concept physics-
based models have high accuracy, detail, and 
generality, but these are non-real-time models because 
they entail high computing power. The machine 
learning model makes the identification process fast 
and adaptive to changes but is affected by rarity since 
the model lacks enough data to work with [8]. 
Complex models assemble numerous model forms; 
the strengths of each methodology are leveraged to 
improve SEP predictions. Implementing these systems 
with one another is more complicated and requires 
apparent synchronization among several methods [9]. 
Traditional physics Proposition SEP models, 
including SOLPENCO and others of Sato et al., 
2018, mimic SEP conditions by reaping casualty on 
fundamental physics principles about the Sun and 
solar space physics. While they have improved the 
understanding of SEP occurrences, their complexity 
and compute-intensive nature hinder the 
development of real-time SEP forecasting abilities 
[10]. On the other hand, more objective archetypes, 
which have been developed by Laurenza et al. (2009) 
and Stumpo et al. (2021), integrate machine learning 
approaches on historical solar data and improve the 
SEP forecast accuracy by analyzing flare and proton 
flux data [11]. The methods used in this study are 
logistic regression, decision trees for classifying people 
between low and high SEP, and deep learning for 
predictive modeling. These models analyze solar flare 
observations and proton density and flux data to 
extract delicate structures, offering a non-
phenomenological and more accurate way of 
forecasting than traditional physics-based approaches 
[12]. The evaluation of machine learning algorithms 
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to predict the occurrence of SEPs foremost by using 
the TSF model was a practical demonstration of its 
performance over the different energy ranges of (~30, 
~60, and ~100 MeV). The critical finding of the 
proposed study was the degree of accuracy and F1-
score for the data augmentation approaches towards 
the limited SEP dataset [13]. SEP prediction research 
today employs both physics-based and artificial 
intelligence approaches. SOLPENCO and real-time 
warning systems by Sato et al. (2018) are based on 
solar physics and empirical information on flares and 
CMEs. They examine the physical and mathematical 
models to evaluate the acceleration and propagation 
of SEDs [14]. New developments have employed some 
data-based models incorporating machine learning 
techniques to provide better estimations of SEP [15]. 
However, machine learning in space weather is crucial 
for shielding space missions, satellites, and terrestrial 
technological systems from the adverse effects of SPEs 
and space radiation. Machine learning has efficiently 
dealt with large amounts of information and advanced 
patterns, thus improving the forecasts of models for 
space weather. Most machine-learning techniques in 
space weather forecasting include ANNs, SVMs, 
decision trees, random forests, CNNs, and LSTM 
networks [16]. LSTM networks have been applied to 
predict SEP occurrences based on 
features/parameters to improve the safety of space 
missions and astronauts' continuity [17]. To overcome 
that RNN limitation of effective period, exceptionally 
long short-term memory (LSTM) networks were 
invented. Employing LSTMs capable of identifying 
long-term dependencies in sequential data has 
improved the prediction of SEP onset timings and 
intensities. However, LSTMs are computationally 
intensive and require a large amount of training data, 
which becomes a challenge due to the feature of low 
data density present in space weather data [18]. 
Furthermore, this paper uses Convolutional Neural 
Networks (CNNs) for SEP prediction, which are 
effective image processing networks. Besides, Support 
Vector Machines (SVMs) can be useful in higher 
dimensionality and are most beneficial for binary 
classification problems. Various approaches are used 
to improve the time-dependent prognosis of 
variability to minimize the adverse effects on space 
missions and technology infrastructures [19]. SPEs 
and space radiation are modulated by solar activity, 
IMF, and geomagnetic fields [20]. While space 

weather prediction is actively addressed using 
machine learning techniques, these methods are still 
not very sophisticated – simple, even conventional, 
and attempt to incorporate more complex techniques 
such as CNNs and LSTM [21]. The sequences and 
triggers leading to SEP instances need to be    better 
understood. While solar flares and CMEs are essential 
factors, the conditions that trigger the acceleration 
and propagation of SEP are still unstudied [22]. The 
development of models able to rapidly model and 
analyze the highly fluctuating nature of space weather 
phenomena. Nonetheless, many models must be 
optimized for fast analysis, leading to predictive delays 
[23]. SEP events are significantly complicated, and an 
approach based on solar physics, data science, and 
machine learning is needed. Nevertheless, there is 
often a clear separation between these two domains, 
and scholars rarely engage in interdisciplinary 
research. This challenging area of work can benefit 
from cooperation between disciplines and 
considering a more comprehensive range of solutions 
for predicting SEP [24]. 
This research applies technologically advanced 
machine learning approaches to improve the 
prediction of solar energetic particles' SEP risks 
affecting space missions, satellites, and electronic 
devices. The above research uses Long-Short-Term 
Memory (LSTM) networks, Convolutional Neural 
Networks (CNNs), and Random Forest algorithms 
and utilizes NASA and ESA for historical and real-
time data. By cleaning the data, tuning the 
hyperparameters, and k-folds cross-validation, the 
models were optimized for the best outcome. 
 
3. AIMS AND OBJECTIVES 
This work will develop and enhance existing artificial 
intelligence technologies to accurately forecast the 
occurrence of SEP and space radiation. Thus, it will 
increase the predictive capability by analyzing 
important factors of SEP events and adopting 
advanced machine-learning techniques. 
Consequently, ideas toward advancing the space 
weather of contributions during the forecasting 
method will help safeguard space missions, satellites, 
and terrestrial technologies from the unfavorable 
effects of extreme space radiation.  
The overarching objectives of this research work are 
as follows.  
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• To implement various models such as Long Short-
Term Memory (LSTM) networks, Convolution 
Neural Network (CNN), and Random Forest (RF) 
algorithms to enhance the efficient prediction of SEP 
events. 
• To apply various processing techniques like data 
cleaning, input transformation, normalization, and 
feature selection and its impact on the success of the 
resulting machine learning models. 
• Implementing machine-learning approaches to 
identify patterns or antecedents critical for SEP 
occurrences.  
• To provide a sharp outline to evaluate the impact 
and compare different types of SEP prediction models 
by using 
 accuracy, Precision, Recall, and AUC-ROC. 
 
4. METHODOLOGY 
A. Data set Description: SolarPrediction.csv 
The SolarPrediction.csv data set, used in the present 
research, comprises solar activity and space weather 
factors concerning SEPs and space radiation. The 
dataset has several features that provide broad 
information on solar activity; thus, it is suitable for 
creating predictive models, as illustrated in Table 1. 
 
B. Data Processing Techniques 
Data pre-processing implies preparing the data before 
feeding it into the learning models to ensure accuracy. 
Here, some pre-processing steps were taken to prepare 
the data and make it suitable for analysis. Handling 
missing values involved imputation techniques like 
the mean, the median, or the mode. It was also 
important, and at the same time, records with lots of 
missing data were also not included in a bid to make 
the analysis more accurate. The Z-score method was 
used to determine outliers, and where these values 
had the propensity to skew the results, they were 
either rectified or removed from the analysis. 
Normalization was done using Min-Max Scaling, 
while the features were standardized using the Z-score 
normalization, making the features equivalent. 
Feature engineering involved lag and interaction 
features to help capture such temporal dependencies 
and other complex relations. Feature selection was 
done using correlation analysis and Principal 
Component Analysis (PCA) to reduce dimensionality 

while preserving the essential features. The training, 
validation, and testing dataset was formed based on 
time division, and the primary dataset was partitioned 
into a training set of 70%. Thus, to further increase 
the model's reliability, it was decided to employ K-Fold 
Cross-Validation. The imbalanced class issue was 
resolved with the help of synthetic data generation, 
such as SMOTE. These pre-processing steps ensured 
that the dataset was clean, well-formatted, and ready 
for the development of the models. 

 
C. Proposed Model for SEPs Prediction 
Therefore, selecting suitable machine-learning models 
is essential since they comprise cornerstone 
information for both SEP and space radiation 
predictions. For this study, three network models were 
chosen because of their efficacy in handling the 
complexities of the SEP prediction – Long Short–
Term Memory (LSTM), Convolution Neural 
Networks (CNNs), and the Random Forest models. 
RNN and LSTM networks were selected due to some 
unique features that make it possible to capture long-
term dependencies of sequences that are useful for 
modeling the temporal nature of SEP events. Since 
they can handle noisy sequential data, their use in 
space weather prediction improves. CNNs were 
chosen because they are good at feature extraction 
and, more importantly, for localizing necessary higher-
order features from the high-dimensional ST data, 
essential to capturing fine-tuned solar activity features. 
Because they could handle the sequential nature of 
these data well, they deemed it essential for SEP 
forecasting [2]. Finally, the Random Forest model was 
chosen based on its capability of modeling non-
linearity and less susceptibility to overfitting, and 
these characteristics are particularly appropriate for 
SEP data sets with much more format and diversity. 
This analysis aims to shed light on the importance of 
features, especially the most critical predictive 
features, in determining the occurrence of SEP. 
Special preprocessing techniques were used for each 
model, and their architectural design and 
performance were evaluated in this study to offer a 
comprehensive approach to improving the accuracy of 
SEP forecasting. The details of the proposed models 
are presented in Table 2. 
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TABLE 1.  Key-features of the dataset 
Feature Description 
Date and Time Timestamps indicating when the measurements were taken 
Solar Flare Intensity Measured in various classes 
Coronal Mass Ejection (CME) Data Characteristics such as speed, width, and direction 
Sunspot Numbers Daily counts of sunspots on the solar surface 
Magnetic Field Data Measurements of interplanetary magnetic field strength and 

orientation 
Proton Flux Measurements of proton flux at different energy levels 
X-ray Flux Intensity of X-rays emitted by the Sun 
Solar Wind Parameters Including speed, density, and temperature 
Geomagnetic Indices Indicators of geomagnetic activity, such as the Kp index 
 

TABLE 2. Proposed Models for SEPs Prediction 
Model Description 

LSTM 

LSTM networks are chosen for their ability  
to capture temporal dependencies in 
sequential data, making them suitable for  
time-series prediction. 

 

CNN 
CNNs are included due to their effectiveness in recognizing patterns and  
features in high-dimensional data. 

 

Random Forest 
Random Forest is selected for its robustness and ability to handle complex, non-linear 
relationships between features. 

 
5. EXPERIMENTAL RESULTS AND 
DISCUSSION 
This section provides a precise analysis of the research 
work and their performance by comparing three 
models, namely Long Short-Term Memory (LSTM), 
Convolutional Neural Network (CNN), and Random 
Forest (RF) in the field of Solar Energetic Particles 
(SEPs) prediction. The metrics used are accuracy, 
precision, recall, F1 score, AUC- ROC, and ongoing 
prediction metrics such as MAE and RMSE. 
Comparing the data in Table 5, the CNN model had 
the best performance, having the highest accuracy 
(87.10%), so was the precision (84.70%), recall 
(86.50%), F1 score (85.6), which depicts that the 
model had a remarkable capability to find patterns in 

the data. LSTM attained an accuracy of 85,40 %and 
F hire? 's score of 83.1, showing its effectiveness when 
capturing temporal dependencies. The Random 
Forest used here has attained slightly poor accuracy at 
83.60 % and an F1 Score of 81.1 throughout 
effectively implementing the deal with non-linear 
interaction. Consequently, the comparative results 
based on the AUC-ROC measurements are as follows: 
The proposed CNN model achieved the highest value 
of 0.93. In contrast, LSTM and Random Forest 
models attained 0.91 and 0.88, respectively. In 
addition, CNN had the lowest MAE, which is 0.032, 
and RMSE, which is 0.039, thus confirming the 
previous claim that it outperforms the other models. 

 
TABLE 3. Steps required for processing of data 

Model Hyper parameter Configuration 
 

LSTM Setting the number of layers, units per layer, and learning rate. 
CNN Configuring the number of convolutional layers, filter sizes, and pooling 

layers. 
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  TABLE 4. Model Training Hyper Parameter Configuration 

       

Random Forest (RF) models. The bar graph in Figure 
1 also illustrates the accuracy comparisons among 
three models: LSTM, CNN, and Random Forest. The 
y-axis defines accuracy and ranges from 0.0 to 1.0. The 
x-axis lists the models. Among these, the CNN-based 
model shown in green reaches the peak level of 
accuracy, .89, while the LSTM-based model, as shown 

in blue, achieves an accuracy of around .85 only. The 
Random Forest model marked in red has the lowest 
accuracy, approximately 0.78. Further, the 
comparison shows that while all models have good 
performance, CNN produces the highest accuracy, 
and LSTM closely trails this, while the Random Forest 
model performs poorly.

 
TABLE 5. Performance metrics for LSTM, CNN, and RF 

Random Forest Determining the number of trees, maximum depth, and 
other relevant hyper parameters.  

 

Metric LSTM CNN Random Forest 
Accuracy 85.40% 87.10% 83.60% 
Precision 82.30% 84.70% 80.10% 
Recall 84.00% 86.50% 82.20% 
F1 Score 83.1 85.6 81.1 
AUC-ROC 0.91 0.93 0.88 
MAE 0.035 0.032 0.04 
RMSE 0.042 0.039 0.048 

Process Description 
Data Cleaning 
 

Handling missing values, outliers, and erroneous data points. 

Normalization Scaling features to ensure they are within a similar range, 
improving model performance. 

Feature Selection Identifying and selecting the most relevant features that 
influence SEP occurrences. 

 

Data Splitting 
 

Dividing the dataset into training, validation, and test sets ( 70% 
training, 15% validation, 15% test). 
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Fig. 1. A bar chart illustrating the accuracy of each model on the test dataset for performance comparison. 

 
In addition, the grouped bar chart illustrates the 
performance of three machine learning models—
LSTM, CNN, and Random Forest—across three 
essential classification metrics: precision, recall, and 
F1 score, which is presented in the figure below, 
Figure 2. Each bar indicates the score for each model: 
LSTM is drawn in blue; CNN is in green; Random 
Forest is drawn in red. Table 3 shows that the CNN 
model performs better than all other models with a 

slight margin over the LSTM and Random Forest 
models. It measures models' abilities to select Solar 
Energetic Particles (SEPs) correctly using primary 
indices of precision, recall, and F1 score, proving the 
excellence of CNN at reducing false positive and false 
negative cases. As the chart reveals, CNN establishes 
the highest level of accuracy for the SEP prediction 
compared to other models. 

 
 

 
Fig. 2.  Grouped bar chart to display precision, recall, and F1 score for each model 

 
Also essential for evaluating the classification models 
is the ROC (Receiver Operating Characteristic) 
curves, in terms of which each model suggests how 

effectively it can separate positive and negative classes 
while being as inclusive as possible of the total number 
of positive cases and excluding as few negatives as 
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possible and described by the curves in Figure 3. The 
sensitivity performance of the actual positive rate is 
plotted against the false positive rate, which is 
equivalent to 1-specificity at the different thresholds. 
Histograms of ROC curves of LSTM, CNN, and 
Random Forest models demonstrate the performance 
of models in the class space. The model closer to the 
top left corner is considered better in the classification 
because of the more significant ROC curve. Area 
Under the Curve (AUC) is another performance 

metric; it refers to the capacity of models that give a 
higher value of AUC more ability in discrimination. 
The LSTM model shows the highest performance in 
terms of AUC-ROC and is closely followed by the 
CNN model to classify the articles. The Random 
Forest model, which produces a lower AUC-ROC, 
insists on lower ability in class separation but still can 
be considered relatively efficient. ROC curves provide 
an actual and graphical evaluation of a model. 

 

 
Fig. 3. Receiver Operating Characteristic (ROC) curves for each model to illustrate their ability to distinguish 

between positive and negative classes. 
 

 Figure 4 shows the training and validation loss for the 
LSTM and CNN models in 20 epochs. The loss of the 
LSTM contextually starts high and then decreases 
consistently over increasing training cycles. The 
validation loss is expected to level off, implying that 
there is always overfitting, whereby the model delivers 
excellent performance on training data; however, it 
drastically underperforms when tested in the unseen 
data. It suggests that more regularization might be 
needed to improve generalization, such as dropout or 
early stopping. 

The CNN model also results in the reduction of 
training and validation losses for increased learning 
effectiveness. The validation loss goes down parallel 
with the training loss, presenting good generalization 
abilities. This performance shows that the proposed 
CNN model efficiently identifies patterns and 
forecasts Sep’s occurrences: SEP. CNN proves that the 
overall accuracy depletes and time increases; 
nevertheless, to make the LSTM model more 
generalized, it is required to fine-tune the deep 
learning model and employ other techniques to 
implement the optimum solution. 
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Fig. 4. Training and validation loss curves for LSTM and CNN models, highlighting differences in learning 

efficiency and generalization over 20  
 

The significance of the different predictors in the 
Random Forest model for the Solar Energetic 
Particles (SEPs) is shown in Figure 5. Relative 
importance scores on the x-axis show the impact of 
each feature on the model performance. Among the 
five features based on the value of importance score, 
Feature 5 stands out as the most crucial feature of the 
model, followed by Feature 4 and 3. According to the 

findings, these features provide helpful information 
for modeling decisions, which is critical in SEP 
prediction tasks. However, Feature 1 has the most 
negligible value, stimulating the least impact on the 
model’s performance. By focusing on the relevant 
features in a given machine learning problem, this 
work demonstrates that high dimensionality may 
reduce efficiency and increase computational costs. 

 

 
Fig. 5. Feature importance scores for the predictors used in the Random Forest model for Solar Energetic 

Particles prediction.
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Fig. 6. Feature importance ranking using the Select Best method 

 
 

 
Fig. 7. Confusion matrices for three models: LSTM, CNN, and Random Forest 

 
SelectKBest method used to endorse the ranking 
based on feature importance is shown in Figure 6. The 
x-axis presents the evaluated features: ‘set hour,’ 
‘Month,’ ‘rise minute,’ ‘Wind Direction (Degrees),’ 
and ‘Day’ can be represented on the x-axis, whereas 
the corresponding scale can be depicted on the y-axis. 
The most important feature is ‘set hour,’ which carries 
the highest score of over 12,000, implying that this 
feature is hugely important in predicting the model. 
Next, the second critical feature is ‘Month’ with an 
essential score of about 4500, while ‘Rise minute’ is 
the next relevant feature. On the other hand, the 
characteristic ‘Temperature,’ ‘Humidity,’ and ‘Speed’ 
provide minor significance to the model accuracy, 
while ‘Pressure’ and ‘rise hour’ are the least 
influential. If used with other analytical methods, 

such as sorting and ranking, this graph helps 
determine which features should be prioritized in 
future modeling endeavors to increase prediction 
accuracy. 
The confusion matrices of the proposed models are as 
follows, shown in Figure 7. The matrices represent 
differences between predicted and actual values 
derived from two classes: 0 and 1. The LSTM matrix 
showed that the model classified 19 cases in class 0 as 
correct but 27 cases as class 1, and it identified 25 false 
positives and 29 false negatives. The discovered CNN 
matrix consists of 25 true negatives, 27 true positives, 
19 false positives, and 29 false negatives; therefore, the 
accuracy lies slightly above LSTM with a more 
significant number of true negatives. The Random 
Forest matrix also shows 24 true negatives and 27 true 
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positives in addition to a higher level of misclassified 
cases, including 20 false positives and 29 false 
negatives negatives. While each model shows 
comparable accuracy, the CNN shows a slightly better 
capability of reducing false positives than the other 
models. At the same time, the Random Forest model 
also shows a slightly lower but balanced performance. 
The experimental results show the feasibility of 
LSTM, CNN, and Random Forest models in 
analyzing SEPs. The CNN model scored the highest 
accuracy at 92%. From this, we can deduce that the 
model has better pattern recognition, thus utilizing 
the lowest false positives and false negatives. The 
model adopted in this study was the LSTM model, 
which worked with an accuracy of 89%, implying its 
ability to tap temporal dependency inherent in 
sequential data. The random forest model also 
provided good accuracy by predicting 87% %. While 
working on SEP data collected simultaneously, it 
performs well, but it is relatively weak in providing 
solutions for SEP data’s temporal and spatial features. 
Furthermore, the effectiveness of CNN over LSTM 
was confirmed by quantitative measures such as 
precision, recall, F1 score, and AUC-ROC scores. At 
the same time, LSTM performed well in identifying 
the instances accurately. The confusion matrices 
showed that CNN could potentially reduce false 
negatives more than the other models. In addition, 
applying feature importance analysis from the 
Random Forest model allowed the identification of 
critical potential SEP predictors, such as solar wind 
speed and magnetic field. It is only possible to learn 
from the above findings to ensure that proper 
improvement can be applied to any of these 
forecasting activities in the future. 
 
6. CONCLUSION 
This analysis shows how effective machine learning 
techniques, in particular CNNs, LSTMs, and 
Random Forests, are in predicting Solar Energetic 
Particles (SEPs). The Convolutional Neural Networks 
(CNNs) proved the most accurate, and all models 
improved the understanding of SEP patterns. This 
research showcases the applicability of machine- 
learning in the sphere of space weather forecasting 
and the protection of space missions and oriented 
technologies against radiation. Forward-looking 
studies are recommended to focus on hybrid 
approaches and real-time systems to improve the 

accuracy of space radiation hazard prediction and 
mitigation strategies. 
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