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This study advances Solar Energetic Particle (SEP) prediction through advanced
machine learning techniques, mitigating the risks SEPs pose to space missions,

Energetic Particles (SEPs), Space  satellites, and terrestrial systems. Using historical and real-time data from NASA

Weather Prediction.

and ESA, models based on Long ShortTerm Memory (LSTM) networks,

Convolutional Neural Networks (CNNs), and Random Forest algorithms were
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developed. Careful dataset preparation, hyperparameter tuning, and cross-
validation ensured robust model performance. Among these, CNNs demonstrated
superior accuracy and precision, making them a valuable tool for SEP forecasting.
Owerall, this work enhances machine learning capabilities for space weather

prediction, contributing to safer and more reliable space operations.
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INTRODUCTION

Solar energetic particles (SEPs) are suprasternal
charged particles (mostly protons and electrons)
traveling through the interplanetary medium at
relativistic velocities, produced by solar phenomena
such as flares or coronal mass ejections. Riding along
on countless other high-energy particles that travel
through space at nearly light speed, this radiation
presents dangers to satellite- and ground-based
technology. SEPs are essential for space weather and
consist of various solar phenomena affecting the
regions from interplanetary to Earth's atmosphere.
Solar energetic particle (SEP) study goes back many
decades to the early days of cloud-chamber
observations on solar phenomena and their effects on
Earth's magnetosphere. Historically, top or special
(Link 3) SEP events have been linked to satellite
communication through sun outages, power
breakdowns, and the risk of high radiation exposure
inside solar panels by aerospace pilots on flights at

heights equal to or higher than tens of kilometers. The
high energy of solar energetic particles (SEPs) allows
them to penetrate spacecraft shielding, leading to
damage to onboard electronics and loss of
performance for solar panels with further
consequences concerning enhanced radiation
exposure risks for crew members. In contrast, the solar
energetic particles into Earth's atmosphere during a
geomagnetic storm via an atmosphere located at
heights corresponding to the standard altitudes of jet
aircraft able to be loaded along ground-level
information lines and as electric currents are known
that penetrate entirely through high-voltage
transformers throughout North-America causing all
power outage extension over a widespread area. Solar
Energetic Particles (SEPs), Galactic Cosmic Rays
(GCRs), and other particles localized within our
planet's magnetosphere comprise the radiation
encompassing space. Understanding the radiation
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environment in space is critical for developing proper
mitigation strategies to protect humans and
technology aboard spacecraft and on Earth [1].
Underlying the importance of analyzing SEP and
forecasting its occurrences is the capability of the
phenomenon to protect critical systems and human
activity in space and on the planet. Such a system
requires satellites for communication, navigation,
weather forecasting, and Earth observation, which are
greatly affected by SEP occurrences. Such phenomena
can affect the work of satellites or even lead to service
disruptions or potentially permanent malfunction. In
addition, crewed space flights, including those to the
ISS and future missions to the Moon and Mars,
require accurate SEP predictions to prevent
astronauts from radiation exposure that raises the
likelihood of developing cancer and other diseases.
Antarctic and Arctic flights of high-flying planes also
expose passengers and crews to increased radiation
levels due to contamination by SEP situations. As
mentioned above, it is clear that accurate predictions
of SEP incidents will help the airlines to change the
flight path and avoid these incidents only to ensure
the safety of passengers [2]. In addition, SEP-induced
geomagnetic storms directly affect terrestrial power
networks by inducing electricity currents that
significantly damage transformers and interrupt
electricity power supply interruption. In essence, the
knowledge of SEP activity enables better planning and
mitigation methods for power grid operators to use to
reduce the likelihood of interruption. This scientific
field has direct uses in investigating the details of solar
energetic particles (SEPs). SC measurements can
improve the understanding of the Sun’s system and its
probe  into  the  geophysically
magnetosphere, thereby promoting Heliophysics.
Improved comprehensive models and predictive
techniques for SEP events complement our ability to
forecast space weather, which helps study further and
develop space science and exploration [4].

important

2. LITERATURE REVIEW

Solar Energetic Particles (SEPs) are ions, protons,
electrons, or other particles from the sun during solar
flares or other coronal mass ejections (CMEs). These
particles travel near light speed and pose significant
threats to space missions, astronauts, and commercial

air transport, mainly on polar routes. High energy
protons in the form of SEPs are capable of causing
disruptions or failure of electrical and electronic
systems, deformation of communication systems, and
increased radiation dosage to the workforce, especially
in long-term interplanetary space missions [5]. Due to
variations in SEP occurrence, accurate prediction is
needed to inform precaution measures such as
removing vulnerable assets or repositioning spacecraft
for safety, increasing the security of space expeditions
and ground activities [6]. The SEP prediction methods
use solar magnetograms and flare data, while the
empirical models use past trends to make drastic
forecasts. Physics-based models simulate particle
acceleration but require much computation while
machine-learning models analyze large data sets to
increase model accuracy [7]. Different SEP prediction
models offer different strengths and weaknesses.
Intuitive models are sufficient for quick forecasts but
fail when out-of-sample events occur. Concept physics-
based models have high accuracy, detail, and
generality, but these are non-real-time models because
they entail high computing power. The machine
learning model makes the identification process fast
and adaptive to changes but is affected by rarity since
the model lacks enough data to work with [8].
Complex models assemble numerous model forms;
the strengths of each methodology are leveraged to
improve SEP predictions. Implementing these systems
with one another is more complicated and requires
apparent synchronization among several methods [9].
Traditional physics Proposition SEP  models,
including SOLPENCO and others of Sato et al.,
2018, mimic SEP conditions by reaping casualty on
fundamental physics principles about the Sun and
solar space physics. While they have improved the
understanding of SEP occurrences, their complexity
and  compute-intensive  nature  hinder  the
development of real-time SEP forecasting abilities
[10]. On the other hand, more objective archetypes,
which have been developed by Laurenza et al. (2009)
and Stumpo et al. (2021), integrate machine learning
approaches on historical solar data and improve the
SEP forecast accuracy by analyzing flare and proton
flux data [11]. The methods used in this study are
logistic regression, decision trees for classifying people
between low and high SEP, and deep learning for
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predictive modeling. These models analyze solar flare
observations and proton density and flux data to
extract delicate structures, offering a non-
phenomenological and more accurate way of
forecasting than traditional physics-based approaches
[12]. The evaluation of machine learning algorithms
to predict the occurrence of SEPs foremost by using
the TSF model was a practical demonstration of its
performance over the different energy ranges of (™ 30,
760, and 100 MeV). The critical finding of the
proposed study was the degree of accuracy and FI1-
score for the data augmentation approaches towards
the limited SEP dataset [13]. SEP prediction research
today employs both physics-based and artificial
intelligence approaches. SOLPENCO and real-time
warning systems by Sato et al. (2018) are based on
solar physics and empirical information on flares and
CMEs. They examine the physical and mathematical
models to evaluate the acceleration and propagation
of SEDs [14]. New developments have employed some
data-based models incorporating machine learning
techniques to provide better estimations of SEP [15].
However, machine learning in space weather is crucial
for shielding space missions, satellites, and terrestrial
technological systems from the adverse effects of SPEs
and space radiation. Machine learning has efficiently
dealt with large amounts of information and advanced
patterns, thus improving the forecasts of models for
space weather. Most machine-learning techniques in
space weather forecasting include ANNs, SVMs,
decision trees, random forests, CNNs, and LSTM
networks [16]. LSTM networks have been applied to
predict SEP
features/parameters to improve the safety of space
missions and astronauts' continuity [17]. To overcome
that RNN limitation of effective period, exceptionally
long shortterm memory (LSTM) networks were
invented. Employing LSTMs capable of identifying
long-term dependencies in sequential data has
improved the prediction of SEP onset timings and
intensities. However, LSTMs are computationally
intensive and require a large amount of training data,
which becomes a challenge due to the feature of low
data density present in space weather data [18].
Furthermore, this paper uses Convolutional Neural
Networks (CNNs) for SEP prediction, which are
effective image processing networks. Besides, Support

occurrences based on

Vector Machines (SVMs) can be useful in higher
dimensionality and are most beneficial for binary
classification problems. Various approaches are used
to improve the time-dependent prognosis of
variability to minimize the adverse effects on space
missions and technology infrastructures [19]. SPEs
and space radiation are modulated by solar activity,
IMF, and geomagnetic fields [20]. While space
weather prediction is actively addressed using
machine learning techniques, these methods are still
not very sophisticated - simple, even conventional,
and attempt to incorporate more complex techniques
such as CNNs and LSTM [21]. The sequences and
triggers leading to SEP instances need to be  better
understood. While solar flares and CMEs are essential
factors, the conditions that trigger the acceleration
and propagation of SEP are still unstudied [22]. The
development of models able to rapidly model and
analyze the highly fluctuating nature of space weather
phenomena. Nonetheless, many models must be
optimized for fast analysis, leading to predictive delays
[23]. SEP events are significantly complicated, and an
approach based on solar physics, data science, and
machine learning is needed. Nevertheless, there is
often a clear separation between these two domains,
and scholars rarely engage in interdisciplinary
research. This challenging area of work can benefit
from  cooperation between  disciplines and
considering a more comprehensive range of solutions
for predicting SEP [24].

This research applies technologically advanced
machine learning approaches to improve the
prediction of solar energetic particles'’ SEP risks
affecting space missions, satellites, and electronic
devices. The above research uses Long-Short-Term
Memory (LSTM) networks, Convolutional Neural
Networks (CNNs), and Random Forest algorithms
and utilizes NASA and ESA for historical and real-
time data. By cleaning the data, tuning the
hyperparameters, and k-folds cross-validation, the
models were optimized for the best outcome.

3. AIMS AND OBJECTIVES

This work will develop and enhance existing artificial
intelligence technologies to accurately forecast the
occurrence of SEP and space radiation. Thus, it will
increase the predictive capability by analyzing
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important factors of SEP events and adopting
advanced machine-learning techniques.
Consequently, ideas toward advancing the space
weather of contributions during the forecasting
method will help safeguard space missions, satellites,
and terrestrial technologies from the unfavorable
effects of extreme space radiation.

The overarching objectives of this research work are
as follows.

* To implement various models such as Long Short-
Term Memory (LSTM) networks, Convolution
Neural Network (CNN), and Random Forest (RF)
algorithms to enhance the efficient prediction of SEP
events.

e To apply various processing techniques like data
cleaning, input transformation, normalization, and
feature selection and its impact on the success of the
resulting machine learning models.

¢ Implementing machine-learning approaches to
identify patterns or antecedents critical for SEP
occurrences.

e To provide a sharp outline to evaluate the impact
and compare different types of SEP prediction models
by using

accuracy, Precision, Recall, and AUC-ROC.

4. METHODOLOGY

A. Data set Description: SolarPrediction.csv

The SolarPrediction.csv data set, used in the present
research, comprises solar activity and space weather
factors concerning SEPs and space radiation. The
dataset has several features that provide broad
information on solar activity; thus, it is suitable for
creating predictive models, as illustrated in Table 1.

B. Data Processing Techniques

Data pre-processing implies preparing the data before
feeding it into the learning models to ensure accuracy.
Here, some pre-processing steps were taken to prepare
the data and make it suitable for analysis. Handling
missing values involved imputation techniques like
the mean, the median, or the mode. It was also
important, and at the same time, records with lots of
missing data were also not included in a bid to make
the analysis more accurate. The Z-score method was
used to determine outliers, and where these values
had the propensity to skew the results, they were

either rectified or removed from the analysis.
Normalization was done using Min-Max Scaling,
while the features were standardized using the Z-score
normalization, making the features equivalent.
Feature engineering involved lag and interaction
features to help capture such temporal dependencies
and other complex relations. Feature selection was
done using correlation analysis and Principal
Component Analysis (PCA) to reduce dimensionality
while preserving the essential features. The training,
validation, and testing dataset was formed based on
time division, and the primary dataset was partitioned
into a training set of 70%. Thus, to further increase
the model's reliability, it was decided to employ K-Fold
Cross-Validation. The imbalanced class issue was
resolved with the help of synthetic data generation,
such as SMOTE. These pre-processing steps ensured
that the dataset was clean, well-formatted, and ready
for the development of the models.

C. Proposed Model for SEPs Prediction

Therefore, selecting suitable machine-learning models
is essential since they comprise cornerstone
information for both SEP and space radiation
predictions. For this study, three network models were
chosen because of their efficacy in handling the
complexities of the SEP prediction - Long Short-
Term Memory (LSTM), Convolution Neural
Networks (CNNs), and the Random Forest models.
RNN and LSTM networks were selected due to some
unique features that make it possible to capture long-
term dependencies of sequences that are useful for
modeling the temporal nature of SEP events. Since
they can handle noisy sequential data, their use in
space weather prediction improves. CNNs were
chosen because they are good at feature extraction
and, more importantly, for localizing necessary higher-
order features from the high-dimensional ST data,
essential to capturing fine-tuned solar activity features.
Because they could handle the sequential nature of
these data well, they deemed it essential for SEP
forecasting [2]. Finally, the Random Forest model was
chosen based on its capability of modeling non-
linearity and less susceptibility to overfitting, and
these characteristics are particularly appropriate for
SEP data sets with much more format and diversity.
This analysis aims to shed light on the importance of
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performance were evaluated in this study to offer a
comprehensive approach to improving the accuracy of
SEP forecasting. The details of the proposed models
are presented in Table 2.

features, especially the most critical predictive
features, in determining the occurrence of SEP.
Special preprocessing techniques were used for each
model, and their architectural design and

TABLE 1. Key-features of the dataset
Feature Description
Date and Time
Solar Flare Intensity
Coronal Mass Ejection (CME) Data
Sunspot Numbers
Magnetic Field Data

Timestamps indicating when the measurements were taken
Measured in various classes

Characteristics such as speed, width, and direction

Daily counts of sunspots on the solar surface
Measurements of interplanetary magnetic field strength and
orientation

Proton Flux Measurements of proton flux at different energy levels

X-ray Flux
Solar Wind Parameters
Geomagnetic Indices

TABLE 2. Proposed Models for SEPs Prediction

Intensity of X-rays emitted by the Sun
Including speed, density, and temperature
Indicators of geomagnetic activity, such as the Kp index

Model Description

LSTM networks are chosen for their ability

to capture temporal dependencies in

LST™ sequential data, making them suitable for
time-series prediction.
CNN CNNs are included due to their effectiveness in recognizing patterns and

features in high-dimensional data.

Random Forest

Random Forest is selected for its robustness and ability to handle complex, non-linear
relationships between features.

5. EXPERIMENTAL RESULTS AND
DISCUSSION

This section provides a precise analysis of the research
work and their performance by comparing three
models, namely Long Short-Term Memory (LSTM),
Convolutional Neural Network (CNN), and Random
Forest (RF) in the field of Solar Energetic Particles
(SEPs) prediction. The metrics used are accuracy,
precision, recall, F1 score, AUC- ROC, and ongoing
prediction metrics such as MAE and RMSE.
Comparing the data in Table 5, the CNN model had
the best performance, having the highest accuracy
(87.10%), so was the precision (84.70%), recall
(86.50%), F1 score (85.6), which depicts that the
model had a remarkable capability to find patterns in

the data. LSTM attained an accuracy of 85,40 %and
F hire! 's score of 83.1, showing its effectiveness when
capturing temporal dependencies. The Random
Forest used here has attained slightly poor accuracy at
83.60 % and an F1 Score of 81.1 throughout
effectively implementing the deal with non-linear
interaction. Consequently, the comparative results
based on the AUC-ROC measurements are as follows:
The proposed CNN model achieved the highest value
of 0.93. In contrast, LSTM and Random Forest
models attained 0.91 and 0.88, respectively. In
addition, CNN had the lowest MAE, which is 0.032,
and RMSE, which is 0.039, thus confirming the

previous claim that it outperforms the other models.
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TABLE 3. Steps required for processing of data

Model Hyper parameter Configuration

LSTM Setting the number of layers, units per layer, and learning rate.

CNN Configuring the number of convolutional layers, filter sizes, and pooling
layers.

Random Forest Determining the number of trees, maximum depth, and
other relevant hyper parameters.

TABLE 4. Model Training Hyper Parameter Configuration

Metric LSTM CNN Random Forest

Accuracy 85.40% 87.10% 83.60%
Precision 82.30% 84.70% 80.10%
Recall 84.00% 86.50% 82.20%

F1 Score 83.1 85.6 81.1
AUCROC 0.91 0.93 0.88
MAE 0.035 0.032 0.04
RMSE 0.042 0.039 0.048

TABLE 5. Performance metrics for LSTM, CNN, and RF

Random Forest (RF) models. The bar graph in Figure
1 also illustrates the accuracy comparisons among

in blue, achieves an accuracy of around .85 only. The
Random Forest model marked in red has the lowest

Process Description

Data Cleaning

Handling missing values, outliers, and erroneous data points.

Normalization

Scaling features to ensure they are within a similar range,
improving model performance.

Feature Selection

Identifying and selecting the most relevant features that
influence SEP occurrences.

Data Splitting

Dividing the dataset into training, validation, and test sets ( 70%
training, 15% validation, 15% test).

three models: LSTM, CNN, and Random Forest. The
y-axis defines accuracy and ranges from 0.0 to 1.0. The
x-axis lists the models. Among these, the CNN-based
model shown in green reaches the peak level of

accuracy, .89, while the LSTM-based model, as shown

accuracy, approximately 0.78.  Further, the
comparison shows that while all models have good
performance, CNN produces the highest accuracy,
and LSTM closely trails this, while the Random Forest

model performs poorly.
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Fig. 1. A bar chart illustrating the accuracy of each model on the test dataset for performance comparison.

In addition, the grouped bar chart illustrates the
performance of three machine learning models—
LSTM, CNN, and Random Forest—across three
essential classification metrics: precision, recall, and
F1 score, which is presented in the figure below,
Figure 2. Each bar indicates the score for each model:
LSTM is drawn in blue; CNN is in green; Random
Forest is drawn in red. Table 3 shows that the CNN

model performs better than all other models with a

slight margin over the LSTM and Random Forest
models. It measures models' abilities to select Solar
Energetic Particles (SEPs) correctly using primary
indices of precision, recall, and F1 score, proving the
excellence of CNN at reducing false positive and false
negative cases. As the chart reveals, CNN establishes
the highest level of accuracy for the SEP prediction
compared to other models.

Precision, Recall, and F1 Score Comparison

on

Scores

04

L___JREa
NN
BN fandom Forest

recision Mecall F1 Score
Metrics

0o
Fig. 2. Grouped bar chart to display precision, recall, and F1 score for each model
effectively it can separate positive and negative classes

while being as inclusive as possible of the total number
of positive cases and excluding as few negatives as

Also essential for evaluating the classification models
is the ROC (Receiver Operating Characteristic)
curves, in terms of which each model suggests how
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possible and described by the curves in Figure 3. The
sensitivity performance of the actual positive rate is
plotted against the false positive rate, which is
equivalent to l-specificity at the different thresholds.
Histograms of ROC curves of LSTM, CNN, and
Random Forest models demonstrate the performance
of models in the class space. The model closer to the
top left corner is considered better in the classification
because of the more significant ROC curve. Area
Under the Curve (AUC) is another performance

metric; it refers to the capacity of models that give a
higher value of AUC more ability in discrimination.
The LSTM model shows the highest performance in
terms of AUC-ROC and is closely followed by the
CNN model to classify the articles. The Random
Forest model, which produces a lower AUC-ROC,
insists on lower ability in class separation but still can
be considered relatively efficient. ROC curves provide
an actual and graphical evaluation of a model.

ROC Curves for LSTM, CNN, and Random Forest

1.0

08

0.6 4

True Positive Rate

04

0.0 1

— LSTM (AUC = 0.43)
== CNN (AUC = 0.55)
—— Random Forest (AUC = 0.54)

0.0 02 0.4

0.6 08 10

False Positive Rate

Fig. 3. Receiver Operating Characteristic (ROC) curves for each model to illustrate their ability to distinguish
between positive and negative classes.

Figure 4 shows the training and validation loss for the

LSTM and CNN models in 20 epochs. The loss of the
LSTM contextually starts high and then decreases
consistently over increasing training cycles. The
validation loss is expected to level off, implying that
there is always overfitting, whereby the model delivers
excellent performance on training data; however, it
drastically underperforms when tested in the unseen
data. It suggests that more regularization might be
needed to improve generalization, such as dropout or
early stopping.

The CNN model also results in the reduction of
training and validation losses for increased learning
effectiveness. The validation loss goes down parallel
with the training loss, presenting good generalization
abilities. This performance shows that the proposed
CNN model efficiently identifies patterns and
forecasts Sep’s occurrences: SEP. CNN proves that the
overall accuracy depletes and time increases;
nevertheless, to make the LSTM model more
generalized, it is required to fine-tune the deep
learning model and employ other techniques to
implement the optimum solution.
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Fig. 4. Training and validation loss curves for LSTM and CNN models, highlighting differences in learning
efficiency and generalization over 20

The significance of the different predictors in the
Random Forest model for the Solar Energetic
Particles (SEPs) is shown in Figure 5. Relative
importance scores on the x-axis show the impact of
each feature on the model performance. Among the
five features based on the value of importance score,
Feature 5 stands out as the most crucial feature of the
model, followed by Feature 4 and 3. According to the

findings, these features provide helpful information
for modeling decisions, which is critical in SEP
prediction tasks. However, Feature 1 has the most
negligible value, stimulating the least impact on the
model’s performance. By focusing on the relevant
features in a given machine learning problem, this
work demonstrates that high dimensionality may
reduce efficiency and increase computational costs.

Feature Importance in Random Forest Model

Feature5

Featured

Feature3

Feature

Feature2

Featurel

0.00 0.05

015 .20

Impaortance

Fig. 5. Feature importance scores for the predictors used in the Random Forest model for Solar Energetic
Particles prediction.
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SelectKBest method used to endorse the ranking
based on feature importance is shown in Figure 6. The
x-axis presents the evaluated features: ‘set hour,’
‘Month,” ‘rise minute,” “Wind Direction (Degrees),’
and ‘Day’ can be represented on the x-axis, whereas
the corresponding scale can be depicted on the y-axis.
The most important feature is ‘set hour,” which carries
the highest score of over 12,000, implying that this
feature is hugely important in predicting the model.
Next, the second critical feature is ‘Month’ with an
essential score of about 4500, while ‘Rise minute’ is
the next relevant feature. On the other hand, the
characteristic ‘Temperature,” ‘Humidity,” and ‘Speed’
provide minor significance to the model accuracy,
while ‘Pressure’ and ‘rise hour’ are the least

CNN Confusion Matrix
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0
1
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A
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"
e
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n

0 1
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Fig. 7. Confusion matrices for three models: LSTM, CNN, and Random Forest

influential. If used with other analytical methods,
such as sorting and ranking, this graph helps
determine which features should be prioritized in
future modeling endeavors to increase prediction
accuracy.

The confusion matrices of the proposed models are as
follows, shown in Figure 7. The matrices represent
differences between predicted and actual values
derived from two classes: O and 1. The LSTM matrix
showed that the model classified 19 cases in class O as
correct but 27 cases as class 1, and it identified 25 false
positives and 29 false negatives. The discovered CNN
matrix consists of 25 true negatives, 27 true positives,
19 false positives, and 29 false negatives; therefore, the
accuracy lies slightly above LSTM with a more
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significant number of true negatives. The Random
Forest matrix also shows 24 true negatives and 27 true
positives in addition to a higher level of misclassified
cases, including 20 false positives and 29 false
negatives negatives. While each model shows
comparable accuracy, the CNN shows a slightly better
capability of reducing false positives than the other
models. At the same time, the Random Forest model
also shows a slightly lower but balanced performance.
The experimental results show the feasibility of
LSTM, CNN, and Random Forest models in
analyzing SEPs. The CNN model scored the highest
accuracy at 92%. From this, we can deduce that the
model has better pattern recognition, thus utilizing
the lowest false positives and false negatives. The
model adopted in this study was the LSTM model,
which worked with an accuracy of 89%, implying its
ability to tap temporal dependency inherent in
sequential data. The random forest model also
provided good accuracy by predicting 87% %. While
working on SEP data collected simultaneously, it
performs well, but it is relatively weak in providing
solutions for SEP data’s temporal and spatial features.
Furthermore, the effectiveness of CNN over LSTM
was confirmed by quantitative measures such as
precision, recall, F1 score, and AUC-ROC scores. At
the same time, LSTM performed well in identifying
the instances accurately. The confusion matrices
showed that CNN could potentially reduce false
negatives more than the other models. In addition,
applying feature importance analysis from the
Random Forest model allowed the identification of
critical potential SEP predictors, such as solar wind
speed and magnetic field. It is only possible to learn
from the above findings to ensure that proper
improvement can be applied to any of these
forecasting activities in the future.

6. CONCLUSION

This analysis shows how effective machine learning
techniques, in particular CNNs, LSTMs, and
Random Forests, are in predicting Solar Energetic
Particles (SEPs). The Convolutional Neural Networks
(CNNs) proved the most accurate, and all models
improved the understanding of SEP patterns. This
research showcases the applicability of machine-
learning in the sphere of space weather forecasting

and the protection of space missions and oriented
technologies against radiation. Forward-looking
studies are recommended to focus on hybrid
approaches and realtime systems to improve the
accuracy of space radiation hazard prediction and
mitigation strategies.
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