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Abstract

Airlines play a vital role in global mobility, with passenger satisfaction heavily
influenced by flight punctuality. Leading carriers like Qatar Airways and Etihad
Airways set high standards in service and innovation. However, delays and
cancellations—caused by weather, congestion, technical issues, or logistics—disrupt
schedules, harm reputations, and reduce profitability. Traditional manual analysis
struggles to provide timely insights amid vast aviation data. This paper introduces
a secure, collaborative machine learning platform for flight delay prediction using
supervised learning on publicly available Kaggle data. The model identifies delay
patterns, root causes, and potential conflicts before they occur, enhancing
situational awareness and enabling proactive interventions. By fostering data
sharing and cooperation among airlines, airports, and regulators, the system
supports smarter, passenger-centric air travel management, transforming flight delay
handling into a more efficient and anticipatory process.
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INTRODUCTION

In an era of rapid globalization and increasing
mobility, air travel has emerged as one of the most
efficient and  indispensable = modes  of
transportation. Whether for domestic commutes or
international journeys, millions of passengers rely
on airlines to provide reliable, safe, and timely travel
services [1]. Ensuring top-tier service delivery has
thus become a strategic imperative for passenger
airlines striving to retain competitiveness, enhance
brand loyalty, and optimize operational efficiency in
an increasingly demanding aviation landscape.
Today’s passengers expect more than just
transportation, they demand a seamless and
pleasant travel experience, marked by convenience,
punctuality, and high service quality [2].

Key dimensions of customer satisfaction in air travel
include cleanliness,
responsive crew behavior, efficient ticketing and
boarding processes, in-flight entertainment, internet
connectivity, comfortable seating, and effective
online booking platforms. The airlines and
particularly leading full-service carriers (FSCs) like
the Qatar Airways, Etihad Airways and Singapore
Airlines have upped the ante by implementing high-
quality services that stipulate international
standards [3, 4]. Meanwhile, low-cost carriers (LCC)
have also allowed the masses to enjoy the service of
air travel at a discounted rate by cutting down on
the non-necessities it previously provided, with
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trade-offs in other baggage cost, seat selection, and
other forms of service [5].

The on-time arrival and departure of flights is one
of the most important indicators of customer
satisfaction since its performance is one of the
factors in reaching the largest number of customers.
Punctuality is an indication of the efficiency of
operations, and this plays an important role in
earning the trust and the loyalty of passengers as well
[6]. Top customers undergo unnecessary
inconveniences, which might not be compensated
for by money. On the other hand, it may appear to
be a source of monetary penalties, missed
connections, and damaged brand image. The
airlines usually face flight delays despite all the
planning that is carried out due to various and
interdependent factors, which include: unfavorable
weather patterns, air traffic delays, technical
failures, crew rostering and related problems as well
as logistic congestion and related elements. This has
a spiraling effect where other operations in the
network are impacted in the postponed flight [7].
A displayed percentage of delayed flights is constant
and continually augmenting as shown by the U.S.
Bureau of Transportation Statistics (BTS); that is,
14.69 percent in 2012 and 20.8 percent in 2019.
This issue does not exist only in the rich nations [8].
In the fast-growing aviation markets like China and
India, delay management is also a hard task because
the number of passengers and infrastructural
capacity increases exponentially. This complexity of
the operational environment is magnified by the
propagation effect of delays in that a single delay in
a flight could affect a number of other flights. To
take an example, late inbound flights may delay the
outbound schedules because of common aircraft or
crew, and this happens especially because of the hub
and spokes airport structures [9]. In this highly
complicated and changeable direction, only the
manual investigation and customary approach to
delay management is not enough. Delay causes are
labor-intensive and error-prone to be manually
analyzed and then overlooked. As big data emerges
and realtime aviation sensor data, operational
systems, and external sources multiply, the emerging
operational data sources are crying out, and smart,
automated systems are needed that can process huge

volumes of data and deliver effective actionable
insights. And this is where we can find
transformative potential of Machine Learning (ML)
and Data Science as the most essential parts of
Artificial Intelligence (AI) [10, 11].

Machine learning algorithms can learn the pattern
using past data and can give precise predictions or
classification on printed data that have never
occurred before. When it refers to flight delay
prediction, ML models will be able to determine the
main variables that affect delays, measure the extent
of their impact, and estimate predictions in real-
time to allow making proactive decisions.
Combining prior history (data) and long
computational routines, airlines can develop
systems which could not only identify delaying
patterns but also predict future disturbances and
reschedule or allocate more resources to cope with
that [12].

The study adds to the existing literature on smart
aviation that has achieved some degree of success,
wherein it may be suggested that a reliable and
collaborative data-driven framework of predicting
flight delays using machine learning algorithms.
Highly detailed data used in the study was extracted
via the Kaggle, with 23 features and more than
129,000 flights based on their details, such as the
names of airlines, scheduled departure time,
scheduled arrival time, actual delay time, weather-
related factors, and airportlevel features. Using
supervised learning algorithms such as Linear
Regression, Naive Bayes, Decision Trees, and
Random Forest it becomes possible to find the
classification and prediction of delays in flights by a
significant margin of precision [13].

Flight delay prediction is not solely the
responsibility of airlines; it requires coordinated
action among multiple stakeholder’s airport
authorities, air traffic control, and ground handling
services, meteorological agencies, and regulatory
bodies. A collaborative, data-sharing ecosystem,
empowered by secure and interoperable digital
platforms, is essential to ensure timely information
exchange and coordinated response strategies. The
integration of such systems can enable real-time
alerting, automated rescheduling, dynamic crew
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assignments, and improved

communication during disruptions [14].
Additionally, the implementation of these
intelligent systems contributes to broader objectives
of sustainability and efficiency. Reducing delays can
significantly lower fuel consumption, cut
operational costs, and decrease carbon emissions
supporting global efforts toward greener aviation.
From a business standpoint, effective delay
management enhances brand reputation, passenger

loyalty, and profitability.

passenger

1 Related Work

Cheevachaipimol et al. [15] used machine learning
to predict flight delays in U.S. airlines, identifying
wind and departure time as key factors. Their model
achieved 70% accuracy and emphasized the
operational cost of delays. The study highlighted the
complexity of modern airline traffic management. It
proposed data-driven strategies to reduce future
disruptions effectively.

Wu et al. [16] investigated domestic flight delays in
American Airlines using data mining and machine
learning. Flight data from the five busiest U.S.
airports was analyzed.
The Gradient Boosting Model (GBM) achieved
85.73% accuracy. The study demonstrated GBM's
effectiveness in minimizing delay impacts.

Reddy et al. [17] implemented a deep belief network
and SVR to analyze flight delays at Beijing
International Airport. Their multifactor approach
captured internal delay patterns using high-
dimensional data. The SVR fine-tuning improved
the model’s predictive performance. This
framework proved effective for complex commercial
aviation scenarios.

Tang [18] integrated machine learning with the
Levenberg-Marquardt algorithm to enhance delay
prediction. Their deep learning model minimized
noise and optimized weight parameters. The
approach improved accuracy over existing methods.
It showed strong potential for improving
operational efficiency and customer satisfaction.
Qu et al. [19] applied ML models including RF,
SVM, GBM, and KNN to predict flight arrival
delays. Using data from major U.S. airports, GBM
achieved 79.7% accuracy. The study confirmed

GBM as the most reliable among compared models.
It offered practical tools for strategic airline
decision-making.

Shi et al. [20] compared three ML algorithms to
analyze flight delay data. The research emphasized
the importance of choosing the right model. Their
results encouraged future testing across domains
like finance and climate. Accurate model selection
was shown to improve predictive reliability.

Alla et al. [21] examined local and network effects
on flight delays using Random Forest algorithms.
Network effects were dominant in long-term delays,
while local delays explained short-term issues. They
introduced new variables like demand-capacity
imbalance and congestion.
Their model achieved over 96% accuracy within a
15-minute window.

Gopichand et al. [22] developed a flight delay
prediction model using Apache Spark and MLIib.
The approach supported real-time analytics
integration with airport information systems. loT-
enabled smart airports were proposed to improve
customer experience. The model showed promise in
managing delays amid increased flight traffic.

Du et al. [23] used LSTM to predict daily flight
delays across 123 U.S. airports. Monte Carlo
Dropout was applied to improve uncertainty
estimation. Weather, congestion, and airport
variables were key inputs. The model achieved a 5.8-
minute median inaccuracy, showing robust
forecasting potential.

Kilic and Sallan [24] introduced the ST-Random
Forest framework using temporal and spatial
variables. It integrated LSTM units and network
theory to forecast delays. The model achieved
92.39% accuracy with high precision and recall. It
proved effective for realtime monitoring of
domestic flight schedules.

Bisandu et al. [25] tackled flight delay issues in
American  Airlines using Gradient Boosting
Classifier. After hyperparameter tuning, the model
achieved 85.73%  accuracy. The research
highlighted the need for intelligent prediction tools.
It underscored ML’s value in ensuring on-time
performance.

Bao et al. [26] designed a framework combining
airport traffic complexity and environmental data.
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They introduced a situational awareness map for
delay forecasting. The study emphasized the role of
ATC variables in delay formation. Advanced
algorithms yielded accurate and airport-specific
predictions.

Luetal. [27] applied a deep belief network and SVR
on Beijing airport data. Their model effectively
processed large datasets and identified key delay
drivers. The hybrid architecture improved forecast
accuracy. It offered a scalable solution for network-
wide delay reduction.

Zhu et al. [28] used real data from Hong Kong
International Airport to compare ML algorithms.
They examined delay causes related to congestion
and airport saturation. Their analysis provided
valuable planning insights for aviation stakeholders.
The findings were relevant for airport systems and
insurance forecasting.

Pineda-Jaramillo et al. [29] evaluated ML models to
reduce economic losses from delays. The Deep
Feedforward Neural Network outperformed other
techniques. Their research stressed infrastructure
and geographic factors in modeling. Further case
studies were recommended to validate long-term
performance.

2 Proposed Methodology

This study utilizes a publicly available dataset
sourced from Kaggle, a leading platform for real-
world data science and machine learning datasets.
The dataset titled airline delay causes can be
accessed through Kaggle. It consists of 129,880
entries and 23 features in CSV format,
encompassing various flight and delay-related
attributes. The dataset is designed to support
predictive modeling of flight delays by incorporating
factors such as airline identifiers, scheduled and
actual times, weather influences, and delay causes.
The research follows a structured scientific
methodology, beginning with the analysis of
feedback and operational data related to airline
delay incidents. Responses from both passengers
and airline personnel inform the contextual
understanding of delay contributors and the
broader airline industry dynamics. The overall
methodology is organized into three principal layers:
(1) Data Acquisition, (2) Preprocessing, and (3)

Application. The application layer is further divided
into two sub-components: (a) Model Training and
(b) Model Evaluation, as illustrated in Figure 1.
The primary goal of this research is to develop an
intelligent, data-driven system capable of accurately
predicting airline delays. To achieve this, machine
learning (ML) techniques are employed, enabling
the system to learn from historical, labeled data and
generate reliable predictions for unseen cases. In the
input stage, the dataset is structured as a feature
matrix, where each row corresponds to a flight
record and each column to a variable (feature). One
of these variables serves as the target feature,
representing the delay (either categorical or
continuous). All data are transformed into numeric
formats, enabling compatibility with ML
algorithms.

The core application layer involves the
implementation of machine learning algorithms
particularly Artificial Neural Networks (ANNs). The
dataset is split into training and validation subsets.
The training set is applied to fine tune the
parameters of the models whereas the validation set
is used to test the performance of the models.
Important hyperparameters (e.g., learning rate,
number of layers, batch size) are adjusted to increase
predictive accuracy. The last stage is to deploy the
final model after it has been evaluated. It can be an
active instrument to help stakeholders in the airline
industry to foresee delays and preempt them. It is
also possible that the system is useful in categorizing
customer experience (e.g. satisfied vs. dissatisfied) by
matching delays with customer satisfaction
measures when available.

2.1  Smart Aviation Flight Delay Airline

Delay Prediction Model

The conceptualized model is made to be of a
structured format with three major layers including
the data acquisition layer, preprocessing layer, and
application layer. To further increase coherence and
the efficiency with which the model operates or
works, the application layer is further divided into
two specialized sub-layers as the training sub-layer,
and the evaluation sub-layer. Such several layers can
guarantee a sustainable and module-oriented
framework that can promote precise processing of
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information, enhanced training of models, and
thorough evaluation of performance.
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Figure 1: Smart Aviation Flight Delay Prediction Flow Structure

The suggested research model is based on a dataset
provided by Kaggle, which is diverse in terms of
classes that it provides in order to facilitate strong
predictive analysis. The model is organized into
three major layers, namely Data Acquisition,
Preprocessing and Application. The first layer is an
entry point where the raw data is gathered, and it
forms the basis of the model. Preprocessing Layer
cleans and standardizes the data to provide quality
and integrity of data by normalizing the data or
eliminating noise in the data and adjustment of
histograms.

Processed data is further forwarded to the higher
layer called the Application Layer, which is further
divided Training Sub-layer and the
Evaluation Sub-layer. In this case, deep machine
learning algorithms are used to formulate and
certify forecasting models. The Performance
Evaluation computes  performance
measures, including accuracy, precision and error
rates. When the model performs poorly it is re-

into

Layer

trained till it becomes excellent. The final model
will be trained and validated and then stored in a
cloud to use it and access the model later. The
architecture is scalable and usable, and even an
inexperienced person may learn how to use the
system with a brief period of training. Figure 1
demonstrates the entire flow of the work process
including data ingestion, and deployment and
serves as a graphic display of the structure and
functionality of the model.

3 Results and Simulation

The model was applied on feature-based dataset,
since the proposed model was developed with
MATLAB using supervised machine learning. A
variety of classifiers neural networks was used to
increase the robustness and flexibility of the
models. The architecture was designed in such a
way that it includes both training and validation
steps to evaluate predictive performance more
thoroughly.
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Figure 2: Key Studies and Data Sources Referenced in Flight Delay Prediction Research

Training was done on 70 per cent of data so that
the model could learn the underlying patterns and
on the other 30 per cent, the data acted as a
validation set to test the model on the unseen data.
The model was specifically made to be used in the

binary classification which essentially goes on to
differentiate between two target classes. Such a
well-organized technique allowed it to be highly
precise, reliable, and generalizable on other data
and in many practical scenarios.
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Figure 3: Frequency Distribution of Zero Errors Using 20 Bins

In Figure 3, the values are drawn in a histogram
that is, adjusted to the axis of the instances. The
visual representation provides an easier and
straightforward view of the distribution, frequency
and the variability of the values in the dataset. The

histogram: through plotting of the frequency of
occurrence of the different values, the histogram is
useful in identifying some important attributes
like the skewness of the data, centrality of the data
and the incidence of outliers or anomalies. This
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type of graphical analysis is not only able to
improve the understanding of the underlying
structure of the dataset but also able to help make
appropriate decisions at the stage of preprocessing,

Gradient = 0.0022367, at epoch 90

e.g., normalization, transformation, or feature
selection. In general, the histogram presented in
Figure 3 is crucial to unveil the significant data
peculiarities and direct the further investigation.
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Figure 4: Analysis of Gradient Stability and Validation Accuracy

Figure 4 is a more detailed visualizing scheme that
demonstrates the highly developed structure of
relationships of the neural network architecture.
In particular, the graph emphasizes the connection
between the validation check and the epoch ratio,
which will provide ideas on the changes in model
performance with the course of training. The set

of variations illustrates a variety of conditions and
gives a subtle outlook on interaction of these
parameters under different circumstances. This
number is a useful visual attribute in the studying
and explaining the training phenomena and
generalization pattern of the neural network.
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Figure 5: Training Gradient and Validation Metrics across 17 Epochs
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Figure 5 gives a clear graphical presentation of the
internal structure of the model as well as
interaction among the model substructures. Such
a representation dwells on the correlation between
the validation check and the epoch ratio, grasping
the manner in which the most significant
parameters will affect the model operation in

different situations. The figure is able to cover a
very wide variety of scenarios and thus there can
be a detailed analysis of the dynamic performance
of the neural network. It can be used as a
particular visual guide that can deepen knowledge
of how the model learns and reacts to decisions
made on the basis of validation.
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Figure 6: Histogram of Coordinate Errors Using 20 Bins for Neural Network Output

The highly detailed graphical representation in the
form of histogram, namely, it is plotted by axis of
instants is depicted in figure 6. Such visualization
presents the complete picture of the values
distribution and frequency that belong to this axis.
Each bar represents the phenomenon of values

Mean Squared Error (mse)

Best Training Performance is 7.1542e-11 at epoch 22

within a specific range, so it is easier to understand
the patterns behind and the changes in the
intensity. The figure is effective visual aid to Study
of the structural characteristics of the data set and
interpretation of essential distribution tendencies
along the axis of instants.
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Figure 7: Gradient Behavior and Validation Accuracy during 22 Training Epochs
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Figure 7 proposes an overall visual depiction of
showing the correlations of the complexity of the
NN model. The particular relationship indicated
in this graph is that of the validation check and the
epoch ratio that shows how the performance varies
under different conditions. Through the many
scenarios, the figure gives a significant
understanding on the behavior of the model
against the fluctuation in these crucial parameters
that is a useful tool/ guide to interpret the
performances. A thorough visualization of Scatter
Chart will appear next, demonstrating the
dynamics of the Neural Network run on an
Automated Production System (APS). It is a chart
that shows the iterative learning process, on
training and validation dataset so that to capture
and detect patterns, relationships, and potentially
anomalous data. The axes are the chosen measures
of performance, and each plot point will show the
results at the network at various iterations to
provide dynamic view of the learning path. To
improve the analysis further Area under the
Scatter Chart shows cumulative performance on
every iteration in the APS framework. This graph
is aimed at summing up values calculated based on
outputs of the neural network as time goes by
giving us a larger scope of converging stage and
stability of the model being studied. It is a frame
of analysis to evaluate the efficiency and stability
of the learning process in general regarding
repetitive training and validation processes.

4 Conclusion

There is a very high potential that machine
learning has on customer satisfaction in the airline
industry including solving the underlying problem
of flight delays which is recurrent and cost an
airline much money. Machine learning models
can help to identify and remove complex-
patterned correlations with large datasets since it
utilizes sophisticated algorithms and data
analytical techniques that could allow the
identification of critical factors that contribute to
delays. This enables the formulation of a
predictive system thereby enabling airlines to act
proactively and minimize operational disturbances
and enhance service stability. The use of such

intelligent systems represents a tactical move to
proactive functioning over the reactive one and
makes the industry more responsive to passenger’s
needs via the use of the latest technologies. With
the increased global need of air travel, the rule-
based methods of conventional air travel
administration is inadequate in handling the
depth and extent of flight information.
Comparatively, machine learning has allowed the
simpler and neural network model to provide
resilient solutions that aptly respond to the needs
of dynamic and data-dominated environments.
The present research is a direct contribution to
this initiative since it assesses and deploys a
predictive framework that can autonomously
predict flight delays. The end objective is to help
airplane companies cut down on the delays,
enhance the efficiency of the airline operations,
and provide better and smoother experience of the
journey to the passengers.
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